KAZALNIKI KAKOVOSTI V ZDRAVSTVU

LETNO POROČILO ZA LETI 2016–2017
KAZALNIKI KAKOVOSTI V ZDRAVSTVU

LETNO POROČILO ZA LETI 2016 IN 2017
Uredniki:
Denis Perko, Blashko Kasapinov, Robert Potisek, Alenka Borovničar

Priprava in pošiljanje podatkov:
Irena Zupanc, Andreja Rudolf, Metka Zaletel, Ajda Rogelj, Milan Čižman, Tjaša Pibernik, Veronika Učakar, Maja Milavec, Irena Klavs, Barbara Mihevc, Saša Steiner-Rihtar, Vesna Zupančič, Ana Lucija Škrjanec, Aleš Korošec, Marcel Kralj

Izdajatelj:
Nacionalni inštitut za javno zdravje, Ministrstvo za zdravje
KAZALO VSEBINE

KAZALO SLIK.. III
KAZALO TABEL.. VI
RAZLAGA KRATIC .. VII
AVTORJI .. VIII

KK2 – IZKLJUČNO DOJENJE ... viii
KK3, 4, 5, 6 IN 7 – SPREJEMI V BOLNIŠNICO ZARADI KRONIČNIH BOLEZNII...................... viii
KK8, 10, 11, 12, 13 IN 14 - NALEŽUJE BOLEZNI ... viii
KK21 – RAZJEDE ZARADI PRITISKA.. viii
KK22 – ČAKALNA DOBA ZA CT ... viii
KK23 – UČINKOVITOST DELA V OPERACIJSKEM BLOKU .. viii
KK24 – TRAJANJE BIVANJA V BOLNIŠNICI... viii
KK25 IN 26 – STOPNJA SPREJEMO ZARADI SLADKORNE BOLEZNI viii
KK28 – STOPNJA AMPUTACIJ SPODNJIH OKONČIN ZARADI SLADKORNE BOLEZNI viii
KK36 - POŠKODBE MED VAGINALNIM PORODOM ... viii
KK37 – DELEŽ CARSKIH REZOV ... viii
KK44 IN 58 – 30 DNEVNA SMRTNOST ZARADI MOŽGANSKE KAPI IN AKUTNEGA MIOKARDNEGA INFARKTA .. viii
KK45 – ČAKANJE NA OPERACIJO V BOLNIŠNICI PO ZLOMU KOLKA (65+) viii
KK47 – POOPERATIVNA VENSKA TROMB(EMBOLIJA) .. viii
KK64 – NACIONALNO SPREMLJANJE BOLNIŠNIČNE PORABE PROTIMIKROBNIH ZDRAVIL viii
KK65 – POŠKODBE OSEB ZA OSTRIMI PREDMETI ... viii
KK67 – PADCI .. viii
KK71 – MRSA .. viii
KK73 – POOPERATIVNA SEPSA .. viii
DODATEK – HIGIENA ROK .. viii

UVOD ... 1
OSREDOTOČENOST NA BOLNIKA ... 3

KAZALO SLIK.. III

PROMOCIJA, PREVENTIVA IN PRIMARNO ZDRAVJE ... 7
BOLNIŠNIČNI SPREJEMI ZARADI KRONIČNIH BOLEZNII .. 7
KK3 – STOPNJA SPREJEMOV ZARADI ASTME ... 9
KK4 – STOPNJA SPREJEMOV ZARADI KOPB .. 11
KK5 – STOPNJA SPREJEMOV ZARADI KRONIČNEGA SRČNEGA POPUŠČANJA 13
KK7 – STOPNJA SPREJEMOV ZARADI HIPERTENZIJE ... 15
NALEZLIJE BOLEZNI

KK8, 9 IN 10 – DELEŽ CEPLJENOSTI PROTI OŠPICAM, DAVICI, TETANUSU, OSLOVSKEMU KAŠLIJU IN HEPATITISU B ... 18
KK11 – DELEŽ CEPLJENOSTI PROTI GRIPI PRI OSEBAH, STARIH 65 LET IN VEČ ... 20
KK12, 13 IN 14 – INCIDENCA OŠPIC, OSLOVSKEGA KAŠLJA IN HEPATITISA B ... 22

UČINKOVITOST ZDRAVSTVENE OSKRBE .. 24
KK21 – RAZJEDE ZARADI PRITISKA .. 24
KK22 – ČAKALNA DOBA ZA CT ... 28
KK23 – UČINKOVITOST DELA V OPERACIJSKEM BLOKU ... 30
KK24 – TRAJANJA BOLNIŠNIČNEGA BIVANJA ... 35
KK25 – STOPNJA SPREJEMOV ZARADI SLADKORNE BOLEZNI .. 50
KK28 – STOPNJA AMPUTACIJ SPONJIIH OKONČIN ZARADI SLADKORNE BOLEZNI ... 52
KK36 - POŠKODBE MED VAGINALNIM PORODOM ... 55
KK37 – DELEŽ CARSKIH REZOV ... 57
KK44 IN 58 – 30-DNEVNA SMRTNOST ZARADI MOŽGanske KAPI IN AKUTNEGA MIOKARDNEGA INFARKTA 60
KK45 – ČAKANJE NA OPERACijo V BOLNIŠNICI PO ZLOMU KOLKE (65+) ... 63
KK47 – POOPERATIVNA VENSKA TROMB(EMBOLIJA) ... 66
KK64 – NACIONALNO SPREMlJANJE BOLNIŠNIČNE PORABE PROTImIKROBNIH ZDRAVIL 68

VARNOST BOLNIKA IN OSEBJA ... 73
KK67 – PADCI ... 73
KK71 – MRSA .. 78
KK73 – POOPERATIVNA SEPSA .. 82
KK65 – POŠKODBE OSEBJA Z OSTRIMI PREDMETI ... 84

DODATEK .. 86

HIGIENA ROK .. 86
KAZALO SLIK

Slika 2: Delež izključno dojenih zdravih* novorojenčkov, po porodnišnicah, Slovenija 2008 – 2017.... 5
Slika 3: Delež izključno dojenih zdravih* novorojenčkov, po porodnišnicah, Slovenija 2016 in 2017.... 6
Slika 4: Stopnja sprejemov zaradi astme na 100000 prebivalcev v letih 2009–2017 v Sloveniji, standardizirana po starosti in spolu. ... 10
Slika 6: Stopnja sprejemov zaradi kronične obstruktivne pljučne bolezni (KOPB) na 100000 prebivalcev v letih 2009–2017 v Sloveniji, standardizirana po starosti in spolu. ... 12
Slika 7: Groba stopnja sprejemov zaradi kronične obstruktivne pljučne bolezni (KOPB) na 100000 prebivalcev po regijah, povprečna vrednost tretjih let (2015–2017)................................. 12
Slika 8: Stopnja sprejemov zaradi srčnega popuščanja na 100000 prebivalcev 2009–2017 v Sloveniji, standardizirana po starosti in spolu. ... 14
Slika 10: Stopnja sprejemov zaradi hipertenzije na 100000 prebivalcev v letih 2009–2017 v Sloveniji, standardizirana po starosti in spolu. ... 16
Slika 12: Stopnja razjed zaradi pritiska (RZP) na 100 sprejemov v splošnih bolnišnicah v Sloveniji v letu 2016. ... 25
Slika 13: Stopnja RZP na 100 sprejemov v specializiranih bolnišnicah v Sloveniji v letu 2016. 25
Slika 14: Stopnja RZP na 100 sprejemov v splošnih bolnišnicah v Sloveniji v letu 2017. 26
Slika 15: Stopnja RZP na 100 sprejemov v specializiranih bolnišnicah v Sloveniji v letu 2017. 26
Slika 16: Odstotek naročil CT-preiskav pri hospitaliziranih bolnikih, pri katerih je bila preiskava opravljena več kot 24 ur po naročilu, pri nekaterih izvajalcih v Sloveniji v letih 2016 in 2017 29
Slika 17: Odstotek izkoriščenosti operacijskih dvoran v nekaterih slovenskih bolnišnicah v letih 2016 in 2017. ... 31
Slika 18: Povprečno trajanje operacije in izkoriščenost operacijske dvorane v nekaterih slovenskih bolnišnicah v letu 2016. .. 32
Slika 19: Povprečno trajanje operacije in izkoriščenost operacijske dvorane v nekaterih slovenskih bolnišnicah v letu 2017. .. 32
Slika 20: Odstotek odpadlih operacij med vsemi načrtovanimi v letih 2016 in 2017 v nekaterih slovenskih bolnišnicah. ... 33
Slika 21: Število operacijskih dvoran in odstotek odpadlih operacij v letu 2016 v nekaterih slovenskih bolnišnicah. ... 33
Slika 22: Število operacijskih dvoran in odstotek odpadlih operacij v letu 2017 v nekaterih slovenskih bolnišnicah. ... 33
Slika 23: Povprečno trajanje akutnega bolnišničnega bivanja zaradi holecistejstomije po posameznih bolnišnicah v Sloveniji v letih 2016 in 2017... 37
Slika 24: Povprečna utež SPP in povprečno trajanje akutnega bolnišničnega bivanja pri bolnikih z izvedeno holecistejstomijo po izvajalcih v letu 2016. .. 37
Slika 25: Povprečna utež SPP in povprečno trajanje akutnega bolnišničnega bivanja pri bolnikih z izvedeno holecistejstomijo po izvajalcih v letu 2017. .. 38
Slika 26: Povprečno trajanje akutnega bolnišničnega bivanja zaradi glavne diagnoze pljučnica domačega okolja v posameznih bolnišnicah v Sloveniji v letih 2016 in 2017. .. 40
Slika 27: Povprečna utez SPP in povprečno trajanje akutnega bolnišničnega bivanja pri bolnikih s pljučnico domačega okolja po izvajalcih v letu 2016. ... 41
Slika 28: Povprečna utez SPP in povprečno trajanje akutnega bolnišničnega bivanja pri bolnikih s pljučnico domačega okolja po izvajalcih v letu 2017. ... 41
Slika 29: Povprečno trajanje bivanja akutnega bolnišničnega bivanja ob izvedbi koronarne premostitvene operacije v posameznih bolnišnicah v letih 2016 in 2017. ... 41
Slika 30: Povprečno trajanje akutnega bolnišničnega bivanja ob glavni diagnozi zloma kolka v posameznih bolnišnicah v letih 2016 in 2017. .. 45
Slika 31: Povprečno trajanje akutnega bolnišničnega bivanja zaradi tonsilektomije ali adenoidektomije v posameznih bolnišnicah v letih 2016 in 2017. ... 47
Slika 32: Povprečno trajanje akutnega bolnišničnega bivanja ob glavni diagnozi možganska kap v posameznih bolnišnicah v letih 2016 in 2017. ... 49
Slika 33: Stopnja bolnišničnih sprejemov zaradi zapletov sladkorne bolezni na 100 000 prebivalcev, standardizirana po starosti in spolu, v Sloveniji v letih 2009 in 2017. ... 51
Slika 34: Starostno standardizirana stopnja amputacij spodnjih okončin zaradi sladkorne bolezni v posameznih bolnišnicah v letih 2012 in 2017. ... 53
Slika 36: Starostno standardizirana stopnja amputacij spodnjih okončin zaradi sladkorne bolezni v letih 2015–2017. .. 54
Slika 38: Delež otrok* rojenih s carskim rezom, Slovenija 2002–2017. ... 58
Slika 39: Delež otrok* rojenih s carskim rezom po porodnišnicah, Slovenija 2007 in 2017. 58
Slika 40: Delež otrok* rojenih s carskim rezom po porodnišnicah, Slovenija 2002–2017. 59
Slika 41: 30-dnevna smrtnost zaradi akutnega miokardnega infarkta pri bolnikih starih 45 let in več v Sloveniji, standardizirana po starosti in spolu med letoma 2009 in 2017. ... 61
Slika 42: 30-dnevna smrtnost zaradi hemoragične možganske kapi pri bolnikih starih 45 let in več v Sloveniji, standardizirana po starosti in spolu med letoma 2009 in 2017. ... 61
Slika 43: 30-dnevna smrtnost zaradi ishemične možganske kapi pri bolnikih starih 45 let in več v Sloveniji, standardizirana po starosti in spolu med letoma 2009 in 2017. ... 62
Slika 44: Odstotek primerov zloma kolka pri osebah, starih 65 let ali več, ki so bile operirane v 2 koledarskih dneh od bolnišničnega sprejema, v nekaterih bolnišnicah v letih 2015–2017. 64
Slika 45: Odstotek primerov sprejemov ob zlomu kolka, operiranih v 2 koledarskih dneh, po izvajalcih v letih 2015–2017. .. 64
Slika 46: Stopnja primerov pljučne embolije na 100 000 sprejemov zaradi vstavitev kolčne ali kolenske endoproteze, standardizirana po starosti in spolu, v Sloveniji med letoma 2012 in 2017. 67
Slika 47: Stopnja primerov venske tromboze na 100 000 sprejemov zaradi kolčne ali kolenske endoproteze, standardizirana po starosti in spolu, v Sloveniji med letoma 2012 in 2017. 67
Slika 48: Poraba antibiotikov (J01) v slovenskih bolnišnicah v letu 2017 (DDD/100 BOD). 71
Slika 49: Poraba antibiotikov (J01) v slovenskih bolnišnicah v letu 2017 (DDD/100 sprejemov). 71
Slika 50: Poraba protiglivih zdravil (J02) v slovenskih bolnišnicah v letu 2017 (DDD/100 BOD). 72
Slika 51: Poraba protivirusnih zdravil (J05) v slovenskih bolnišnicah v letu 2017 (DDD/100 BOD). 72
Slika 52: Stopnja padcev v splošnih bolnišnicah v Sloveniji med letoma 2016 in 2017 na 1000 dni hospitalizacije. .. 74
Slika 53: Stopnja padcetv v specializiranih bolnišnicah v Sloveniji med letoma 2016 in 2017 na 1000 dni hospitalizacije. .. 74
Slika 54: Odstop padcetv s poškodbami v bolnišnicah v Sloveniji v letih 2015–2017, lijakast diagram. .. 77
Slika 55: Delež bolnikov, ki so MRSA pridobili v posamezni bolnišnici, glede na skupno število bolnikov, pri katerih je bila ugotovljena MRSA v letu 2016. ... 81
Slika 56: Delež bolnikov, ki so MRSA pridobili v posamezni bolnišnici, glede na skupno število bolnikov, pri katerih je bila ugotovljena MRSA v letu 2017. ... 81
Slika 57: Stopnja pooperativne sepse na 100000 sprejemov zaradi kirurškega posega, standardizirana po starosti in spolu, v Sloveniji med letoma 2012 in 2017. ... 83
Slika 58: Stopnja pooperativne sepse na 100000 sprejemov zaradi kirurškega posega pri izvajalcih zdravstvenih storitev v Sloveniji za obdobje od 2015–2017, lijakast diagram. ... 83
Slika 59: Povprečno število poškodb osebja z ostrimi predmeti na leto na 100 zaposlenih pri nekaterih izvajalcih bolnišničnega zdravljenja v Sloveniji med letoma 2016 in 2017. ... 85
Slika 60: Vrednosti kazalnika higiena rok po bolnišnicah po letih spremljanja. .. 89
Slika 61: Vrednosti kazalnika higiena rok po bolnišnicah za enote intenzivne terapije (EIT) in druge oddelke (oddelki). .. 89
KAZALO TABEL

Tabela 1: Groba stopnja sprejemov astme, KOPB, kroničnega srčnega popuščanja in hipertenzije na 100000 prebivalcev po regijah, povprečna vrednost tretih let (2015–2017)..................8
Tabela 2: Delež cepljenih proti nekaterim nalezljivim boleznim v Sloveniji med letom 2014 in 2017. 19
Tabela 4: Število prijavljenih primerov in incidenčna stopnja nekaterih nalezljivih bolezni v Sloveniji v letih 2009–2017...23
Tabela 5: Temeljne značilnosti akutnih obravnav z izvedbo premostitvene operacije na koronarnih arterijah v letu 2017...43
Tabela 6: Poraba (DDD/100 BOD) antibiotikov za sistemsko rabo (J01) na oddelkih splošnih bolnišnic (n = 10) in UKC (n = 2) v letu 2016 ...70
Tabela 7: Poraba (DDD/100 BOD) antibiotikov za sistemsko rabo (J01) na oddelkih splošnih bolnišnic (n = 10) in UKC (n = 2) v letu 2017 ...70
Tabela 8: Odstotek poškodb ob padcu v bolnišnicah v Sloveniji v letu 2016.................................75
Tabela 9: Odstotek poškodb ob padcu v bolnišnicah v Sloveniji v letu 2017.................................76
Tabela 10: Število bolnikov z ugotovljeno MRSA in delež teh bolnikov z bolnišnično pridobljeno MRSA v posamezni bolnišnici v letu 2016...79
Tabela 11: Število bolnikov z ugotovljeno MRSA in delež teh bolnikov z bolnišnično pridobljeno MRSA v posamezni bolnišnici v letu 2017...80
Tabela 12: Higiena rok zdravstvenih delavcev in sodelavcev v enotah intenzivne terapije za leti 2016 in 2017..88
Tabela 13: Higiena rok na ostalih oddelkih bolnišnic za leti 2016 in 2017.................................88
Tabela 14: Ocena vrednosti kazalnika higiena rok po bolnišnicah...90
RAZLAGA KRATIC

BOD – bolnišnično oskrbni dan
DDD – definirane dnevne doze
ECDC – Evropski center za preprečevanje in obvladovanje bolezni
EIT – enota intenzivne terapije
GVT – globoka venska tromboza
KK – kazalnik kakovosti
KOPB – kronična obstruktivna pljučna bolezen
MKB – Mednarodna klasifikacija bolezni
MRSA – proti meticilinu odporni Staphylococcus aureus
MZ – Ministrstvo za zdravje
NIJZ – Nacionalni inštitut za javno zdravje
OI – Onkološki inštitut Ljubljana
OECD – Organizacija za gospodarsko sodelovanje in razvoj
PATH – Partners Advancing Transitions in Healthcare
PE – pljučna embolija
PIS – Perinatalni informacijski sistem Republike Slovenije
RZP – razjede zaradi pritiska
SB – splošna bolnišnica
SPP – skupine primerljivih primerov
SZO – Svetovna zdravstvena organizacija
UKC – univerzitetni klinični center
ZZS – Zdравniška zbornica Slovenije
ZZZS – Zavod za zdravstveno zavarovanje Slovenije
AVTORJI

KK2 – IZKLJUČNO DOJENJE
Barbara Mihevc Ponikvar, Denis Perko, Blashko Kasapinov

KK3, 4, 5, 6 IN 7 – BOLNIŠNIČNI SPREJEMI ZARADI KRONIČNIH BOLEZNI
Denis Perko, Blashko Kasapinov

KK8, 9, 10, 11, 12, 13 IN 14 - NALEZLIJE BOLEZNI
Denis Perko, Blashko Kasapinov, Veronika Učakar

KK21 – RAZJEDE ZARADI PRITISKA
Denis Perko, Blashko Kasapinov

KK22 – ČAKALNA DOBA ZA CT
Denis Perko, Blashko Kasapinov

KK23 – UČINKOVITOST DELA V OPERACIJSKEM BLOKU
Denis Perko, Blashko Kasapinov

KK24 – TRAJANJE BOLNIŠNIČNE BIVANJA
Denis Perko, Blashko Kasapinov

KK25 IN 26 – STOPNJA SPREJEMOV ZARADI SLADKORNE BOLEZNI
Denis Perko, Blashko Kasapinov

KK28 – STOPNJA AMPUTACIJ SPODNIH OKONČIN ZARADI SLADKORNE BOLEZNI
Denis Perko, Blashko Kasapinov

KK36 - POŠKODBE MED VAGINALNIM PORODOM
Barbara Mihevc Ponikvar, Denis Perko, Blashko Kasapinov

KK37 – DELEŽ CARSIH REZOV
Barbara Mihevc Ponikvar, Denis Perko, Blashko Kasapinov

KK44 IN 58 – 30 DNEVNA SMRTNOST ZARADI MOŽGANSKE KAPI IN AKUTNEGA MIOKARDNEGA INFARKTA
Denis Perko, Blashko Kasapinov

KK45 – ČAKANJE NA OPERACIJO V BOLNIŠNICI PO ZLOMU KOLKA (65+)
Denis Perko, Blashko Kasapinov

KK47 – POOPERATIVNA VENSKA TROMB(EMBERLIJA)
Denis Perko, Blashko Kasapinov

KK64 – NACIONALNO SPIREMLJANJE BOLNIŠNIČNE PORABE PROTIMIKROBNIH ZDRAVIL
Milan Čižman

KK65 – POŠKODBE OSEBJA Z OSTRIMI PREMETI
Denis Perko, Blashko Kasapinov

KK67 – PADCI
Denis Perko, Blashko Kasapinov

KK71 – MRSA
Denis Perko, Blashko Kasapinov

KK73 – POOPERATIVNA SEPSA
Denis Perko, Blashko Kasapinov

DODATEK – HIGIENA ROK
Vesna Župančič

Kazalniki kakovosti so bili razviti kot odgovor na potrebo po večdimenzionalnih in dostopnih kakovostnih merilih za meritev kakovosti zdravstvenega varstva. Podprti so z dokazi in se uporabljajo za ugotavljanje variacij v kakovosti bolnišničnega in zunajbolnišničnega zdravstvenega varstva. NZO v poročilu »Kakovost v negi« (Quality in care) predlaga, da bi si zdravstveni sistem moral prizadevati za izboljšave na šestih področjih kakovosti zdravstvenega varstva:

- **uspešnost** – zdravstveno varstvo, podprto z dokazi, kar se kaže v izboljšanju zdravstvenih izhodov posameznikov in skupnosti;
- **učinkovitost** – maksimalna poraba virov in izogibanje izgubam;
- **dostopnost** – pravočasnost, geografsko sprejemljivost in zagotovljenost v okolju, kjer spremeni in viri ustreznijo zdravstvenim potrebam;
- **sprejemljivost za bolnika in osredočenost nanj** – upoštevanje želja in prizadevanj posameznih uporabnikov storitev in kulture njihovih skupnosti;
- **pravičnost** – enakost glede osebnih značilnosti kot spol, rasa, narodnost, geografsko poreklo in socialno-ekonomski status
- **varnost** – minimiziranje tveganj in škode uporabnikom

Slovenija je leta 1999 začela narodni projekt o kazalnikih kakovosti. Zasnovan je bil s strani Ministrstva za zdravje (MZ), Nacionalnega inštituta za javno zdravje (NIJZ) in Zdravniške zbornice Slovenije (ZZS). ZZS je prevzela glavno pobudo pri razvoju kazalnikov kakovosti. Leto 2006 so bili postavljeni prvi kazalniki kakovosti bolnišnične obravnave, vendar je bilo treba postaviti jasne smernice podatkovnega zbiranja in razumijevanja kazalnikov. Leta 2010 je bila izbrana delovna skupina predstavnikov bolnišnic, Zavoda za zdravstveno zavarovanje Slovenije (ZZSZ), MZ, NIJZ in ZZS. V tem letu je Slovenija postala polnopravna članica OECD. Decembra 2010 je izšel prvi slovenski Priročnik o kazalnikih kakovosti, ki ga je izdalo MZ. Izbranih je bilo 72 kazalnikov kakovosti, ki so se vedno uporabljajo. Podlaga za izbor kazalnikov kakovosti so bili že vzpostavljeni kazalniki, opredeljeni v Aneksu št. 2 k Splošnemu dogovoru 2010, ZZS v okviru projekta Kakovost v zdravstvu Slovenije, projekta PATH (Performance assessment
tool for quality improvement in hospitals) SZO in OECD. Prvo Letno poročilo o kazalnikih kakovosti v zdravstvu je izšlo za leto 2010.

Pridobljeni podatki ne bodo nikoli popolni. Zaupati moramo temu, kar imamo. Čeprav se podatki filtrirajo skozi več sit, se bodo vedno prikradle določene napake, ki jih lahko odkrijemo tik pred zdajci. Kot je bilo navedeno že v enem od prejšnjih letnih poročil, prikazani rezultati lahko več povedo o kakovosti podatkov kot o kakovosti parametrov zdravstvenega varstva. Vsi udeleženci v procesu priprave in branja letnega poročila bi se morali zavedati teh omejitev. Z napori vseh udeležencev bi se v sorazmerno kratkem času lahko dosegla znatna izboljšanja.
OSREDOTOČENOST NA BOLNIKA

KK2 – IZKLJUČNO DOJENJE

Za novorojenčke in dojenčke v prvih mesecih življenja je dojenje najboljši vir prehrane. Materino mleko zagotavlja vse potrebne hranilne snovi. Otroka ščiti pred okužbami ter spodbuja njegov imunski sistem in odzive na cepljenja (1, 2). Nekatere raziskave kažejo na boljši kognitivni razvoj dojenih otrok in manjše zbolevanje za kroničnimi nenaležljivimi boleznimi v odrasli dobi (1–3). Materne dojenje ščiti pred rakom dojke, zmanjšuje tveganje za zlome kolka in prispeva k večjemu časovnemu intervalu med porodi.

Ob ustreznih informacijah o dojenju, podpori zdravstvenih strokovnjakov, družine in okolja lahko doji večina mater. Včasih materino zdravstveno stanje dojenja ne dopušča. S pristavljanjem je najbolje začeti čim prej po porodu.

Nacionalni medicinski register porodov in rojstev, Perinatalni informacijski sistem (PIS), je bil uporabljen za vir podatkov. Vključuje podatke o vseh porodih in rojstvih v 14-ih slovenskih porodnišnicah. Uporabni navodili za uporabo PIS je NIZ. Vključuje podatke o vseh porodih in rojstvih v 14-ih slovenskih porodnišnicah. Uporabna zbirka je NIZ. Podatki o dojenju se v PIS praviloma beleže pred odpustom otročnice in novorojenčka. V večini porodnišnic jih zabeležijo medicinske sestre oz. babice, v nekaterih pediatri, kar ni v skladu s priporočili projekta PATH, saj to, da bi se izognili informacijski pristranskosti, podatkov naj ne bi zbirale osebe, ki so neposredno vključene v nego matera in novorojenčka. Možnosti, ki se lahko zabeležijo pri dojenju so DA, DELNO in NE. Kot izključno dojene smo upoštevali novorojenčke, ki so imeli za beleženo vrednost DA.

Delež izključno dojenih novorojenčkov je glede na beležene podatke v zadnjem desetletju pomembno upadel (slika 1). Leta 2017 je bil delež izključno dojenih »zdravih« novorojenčkov v slovenskih porodnišnicah 72,5 %, kar je 15 odstotnih točk manj kot pred desetimi leti. V letu 2016 je bil delež še nekoliko nižji (71,8 %). Upad je večinoma posledica povečanega deleža delno dojenih novorojenčkov, ki se je leta 2017 gibal med 4 % in 65 %, medtem, ko so bile razlike v deležu novorojenčkov, ki sploh niso dojeni, manjše. Takšnih novorojenčkov je bilo v proučevani skupini med 0,5 % in 2,5 %. Beleženi trendi so v zadnjih letih med porodnišnicami različni. Medtem, ko nekatere porodnišnice še beležijo upadanje deleža izključnega dojenja, v drugih delež ostaja na podobni ravni ali raste. Tako je npr. delež izključno dojenih otrok med letoma 2016 in 2017 v Trbovljah upadal za 8.
odstotnih točk, v Izoli porasel za 11 odstotnih točk. Precejšen porast je bil zabeležen tudi v Murski Soboti.

Glede na velike razlike v deležu izključno dojenih novorojenčkov med porodnišnicami, ki jih zadnja leta opažamo, smo že pri pripravi predhodnih poročil pomisli na razlike pri beleženju, ki bi lahko bile posledica različnega razumevanja pojma »izključno« in »delno« dojenje. Zato smo v letu 2013 kontaktirali vseh 14 porodnišnic in jih povprašali po njihovih praksah beleženja tega podatka. Izkazalo se je, da so pomembne razlike vsaj na dveh področjih. Nekatere porodnišnice pri podaji ocene ali je otrok izključno ali delno dojen upoštevajo celoten čas bivanja od rojstva dalje (kot je bilo predlagano tudi v projektu PATH), druge ocenjujejo stanje v zadnjih 24-ih urah oz. ob odpustu iz porodnišnice in tako ne upoštevajo morebitnih dodatkov, ki jih je otrok prejel pred tem. Primerljivost dodatno otežuje dejstvo, da so med porodnišnicami precejšnje razlike v ležalni dobi po porodu. Druga neenotnost je pri beleženju stanja otrok, ki so hranjeni z izbrizganim materinim mlekom. Te otroke nekatere porodnišnice pravilno označijo kot dojene, nekatere kot delno dojene ali celo kot nedojene. Po prenovi PIS v letu 2013 smo pomisli na možnost, da bi bilo naraščanje razlik med porodnišnicami posledica napak v beleženju podatkov, vendar bi pričakovali, da bi se te napake v nekaj letih odpravile in ne bi smele več vplivati na kakovost podatkov, kar pa se ni zgodilo.

Zaradi omenjenih razlik v beleženju in posledični nezanesljivosti podatkov, se prikazane podatke o izključnem dojenju jemlje informativno, ker ne odražajo različnih praks dojenja v slovenskih porodnišnicah. V kolikor se želi kazalnik uporabljati kot merilo kakovosti dela slovenskih porodnišnic, bo potrebno poenotiti definicijo izključnega dojenja in poskrbeti, da bodo z njo seznanjeni vsi izvajalci. Smiselno je bilo spremljati dva različna kazalnika in sicer dojenje tekom celotne hospitalizacije ter dojenje ob odpustu iz porodnišnice, kar bo možno spremeniti ob naslednji prenovi PIS. Vsekakor je smiselno nadaljnje spremljanje kazalnika, saj kaže neugoden trend padanja izključnega dojenja v slovenskih porodnišnicah.

*Vključeni so enojčki, rojeni v porodnišnicah, težki 2000 gramov in več, z gestacijsko starostjo 37 tednov in več ter Apgarjem po peti minuti 5 ali več.

*Vključeni so enojčki, rojeni v porodnišnicah, težki 2000 gramov in več, z gestacijsko starostjo 37 tednov in več ter Apgarjem po peti minuti 5 ali več.

*Vključeni so enojčki, rojeni v porodnišnicah, težki 2000 gramov in več, z gestacijsko starostjo 37 tednov in več ter Apgarjem po peti minuti 5 ali več.

Literatura:

4. Projekt PATH. Navodila za prikaz kazalnika izključno dojenje.
Večina zdravstvenih sistemov ima razvito primarno raven zdravstvenega varstva, ki skrbi za promocijo zdravja, preprečevanje bolezni, vodenje novih in kroničnih zdravstvenih stanj ter v ustreznih primerih napotitev na sekundarno ali terciarno raven (1). Ključno je vzdrževanje dobrega bolnikovega stanja. Zelo učinkovita primarna raven zdravstvenega sistema lahko prispeva k znatnemu zmanjšanju števila akutnih poslabšanj kroničnih bolezni in nepotrebnih obravnav na sekundarni ali terciarni ravni.

Astma, kronična obstruktivna pljučna bolezen (KOPB), srčno popuščanje in arterijska hipertenzija so kronične bolezni, za katere imamo klinične smernice učinkovitega zdravljenja. Večina od njih je dobro vodljiva na primarni zdravstveni ravni.

Stopnja bolnišničnih sprejemov zaradi kroničnih bolezni je kazalnik, ki ga OECD uporablja za oceno kakovosti ambulantne oskrbe. Bolezn, ki so ambulantno dobro obvladovane, lahko zahtevajo manj bolnišničnih sprejemov, vendar sta njihov delež oz. stopnja odvisna tudi od drugih dejavnikov. Obseg drugih dejavnikov ni znan. Poudariti je treba vpliv razlik v kodiranjih kroničnih bolezni v bolnišničnih podatkovnih bazah, navad ali doktrin napotovanj ter hospitalizacij in razpoložljivosti bolniških postelj na končni nabor podatkov.

Analizirani podatki so prikazani v obliki črtnega in lijakastega grafikona (»funnel plot«). Standardizirani so po starosti in spolu, medtem ko so podatki po regijah nestandardizirani (tabela 1). V obliki lijakastega grafikona so prikazane triletne stopnje sprejemov med leti 2015–2017 po statističnih slovenskih regijah. Lijakasti diagram se uporablja pri prepoznavanju razlik med regijami, ki najverjetneje niso posledica vsakoletnih pričakovanih variacij v rezultatih. Prikaz temelji na predpostavki, da imajo le dovolj velika odstopanja od aritmetične sredine posebne razloge in niso le naključni pojav.

<table>
<thead>
<tr>
<th>REGIJA</th>
<th>GROBA STOPNJA SPREJEMOV NA 100000 PREBIVALCEV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ASTMA</td>
</tr>
<tr>
<td>POMURSKA</td>
<td>49,3</td>
</tr>
<tr>
<td>PODRAVSKA</td>
<td>60,4</td>
</tr>
<tr>
<td>KOROŠKA</td>
<td>48,2</td>
</tr>
<tr>
<td>SAVINJSKA</td>
<td>44,8</td>
</tr>
<tr>
<td>ZASAVSKA</td>
<td>41,8</td>
</tr>
<tr>
<td>POSAVSKA</td>
<td>17,0</td>
</tr>
<tr>
<td>JUGOVZHODNA SLOVENIJA</td>
<td>26,9</td>
</tr>
<tr>
<td>OSREDNJSLOVENSKA</td>
<td>27,4</td>
</tr>
<tr>
<td>GORENJSKA</td>
<td>47,4</td>
</tr>
<tr>
<td>PRIMORSKO-NOTRANJSKA</td>
<td>39,6</td>
</tr>
<tr>
<td>GORIŠKA</td>
<td>25,8</td>
</tr>
<tr>
<td>OBALNO-KRAŠKA</td>
<td>47,5</td>
</tr>
<tr>
<td>SLOVENIJA</td>
<td>40,3</td>
</tr>
</tbody>
</table>
KK3 – STOPNJA SPREJEMOV ZARADI ASTME

OECD-stopnja sprejemov zaradi astme se definira kot število vseh ne-materinskih (ne-neonatalnih) bolnišničnih sprejema z diagnozo astma v specifičnem letu glede na število vseh prebivalcev. V primerjavi z OECD-definicijo 2014–2015 so v novi definiciji 2016–2017 izključeni tudi primeri bolnikov, ki so umrli med sprejemom.

Stopnja sprejemov zaradi astme je standardizirana po starosti in spolu na 100 000 prebivalcev. Iz pridobljenih podatkov je razvidno, da se je stopnja sprejemov zaradi astme glede na blažji trend naraščanja v letih od 2009 do 2015, v letih 2016 in 2017 znatno zmanjšala (*slika 4*). V primerjavi s članicami OECD je bila stopnja v letu 2015 nižja od povprečja OECD (1).

Groba stopnja sprejemov zaradi astme s povprečno vrednostjo 3 let na 100 000 prebivalcev po regijah kaže večjo stopnjo sprejemov zaradi astme v podravski regiji in nižjo v osrednjeslovenski (*slika 5*).
Slika 4: Stopnja sprejemov zaradi astme na 100000 prebivalcev v letih 2009–2017 v Sloveniji, standardizirana po starosti in spolu.

KK4 – STOPNJA SPREJEMOV ZARADI KOPB

OECD-stopnja sprejemov zaradi KOPB se definira kot število vseh ne-materinskih (ne-neonatalnih) bolnišničnih sprejemov z diagnozo KOPB v specifičnem letu glede na število vseh prebivalcev. V primerjavi z OECD-definicijo 2014-2015 so v novi definiciji 2016-2017 izključeni tudi primeri bolnikov, ki so umrli med sprejemom.

Stopnja sprejemov zaradi KOPB je standardizirana po starosti in spolu na 100000 prebivalcev. Iz pridobljenih podatkov je razvidno, da se stopnja sprejemov zaradi KOPB od leta 2009 postopoma zmanjšuje (slika 6). V primerjavi s članicami OECD je bila stopnja v letu 2015 nižja od povprečja OECD (1).

Groba stopnja sprejemov zaradi KOPB s povprečno vrednostjo 3 let na 100000 prebivalcev po regijah prikaže večjo stopnjo sprejemov zaradi KOPB v podravski in pomurski regiji ter nižjo v osrednjeslovenski in posavski (slika 7).
Slika 6: Stopnja sprejemov zaradi kronične obstruktivne pljučne bolezni (KOPB) na 100 000 prebivalcev v letih 2009–2017 v Sloveniji, standardizirana po starosti in spolu.

KK5 – STOPNJA SPREJEMOV ZARADI KRONIČNEGA SRČNEGA POPUŠČANJA

OECD-stopnja sprejemov zaradi kroničnega srčnega popuščanja se definira kot število vseh nematerinskih (ne-neonatalnih) bolnišničnih sprejemov z diagnozo kronično srčno popuščanje v specifičnem letu glede na število vseh prebivalcev. V primerjavi z OECD-definicijo 2014–2015 so v novi definiciji 2016–2017 izključeni tudi primeri bolnikov, ki so umrli med sprejemom.

Groba stopnja sprejemov zaradi kroničnega srčnega popuščanja s povprečno vrednostjo 3 let na 100000 prebivalcev po regijah prikaže večjo stopnjo sprejemov zaradi kroničnega srčnega popuščanja v posavski, pomurski in goriški regiji ter nižjo v osrednjeslovenski in podravski (slika 9).
Slika 8: Stopnja sprejemov zaradi srčnega popuščanja na 100000 prebivalcev 2009–2017 v Sloveniji, standardizirana po starosti in spolu.

KK7 – STOPNJA SPREJEMOV ZARADI HIPERTENZIJE

OECD-stopnja sprejemov zaradi hipertenzije se definira kot število vseh ne-materinskih (ne-neonatalnih) bolnišničnih sprejemov z diagnozo hipertenzija v specifičnem letu glede na število vseh prebivalcev. V primerjavi z OECD-definicijo 2014–2015 so v novi definiciji 2016–2017 izključeni tudi primeri bolnikov, ki so umrli med sprejemom.

Stopnja sprejemov zaradi hipertenzije je standardizirana po starosti in spolu na 10000 prebivalcev. Iz pridobljenih podatkov je razvidno, da se stopnja sprejemov zaradi hipertenzije od leta 2009 naprej močno znižuje (slika 10).

Groba stopnja sprejemov zaradi hipertenzije s povprečno vrednostjo 3 let na 100000 prebivalcev po regijah prikaže večjo stopnjo sprejemov zaradi hipertenzije v pomurski in goriški regiji ter nižjo v osrednjeslovenski (slika 11).

V vseh obravnavanih primerih stopnje sprejemov zaradi kroničnih bolezni je mogoče opaziti trend nižanja stopnje sprejemov, kar lahko kaže na izboljšano delovanje primarne zdravstvene ravni v Sloveniji.

Ob tem so opazne razlike po regijah v stopnji sprejemov zaradi kroničnih bolezni. Največjo stopnjo sprejemov zaradi kroničnih bolezni imajo vzhodnoslovenske regije, najmanjšo pa osrednjeslovenska. Razlogi za to bi lahko bili zmogljivejša primarna ravni zdravstvenega varstva, težja dostopnost do specialističnih ambulant, večja zasedenost bolnišnic ali drugačna praksa kodiranj osrednjeslovenske regije v primerjavi z vzhodnoslovenskimi regijami.

Literatura:

NALEZLJIVE BOLEZNI

KK8, 9 IN 10 – DELEŽ CEPLJENOSTI PROTI OŠPICAM, DAVICI, TETANUSU, OSLOVSKEMU KAŠLJU IN HEPATITISU B

Nekatere države OECD so vzpostavile svoj cepitveni program, ki temelji na lastni presoji tveganj in koristi posameznih cepiv (1). Povprečno je več kot 95% otrok držav OECD cepljenih proti davici, tetanusu, oslovskemu kašlju in ošpicam ter skoraj 94% proti hepatitisu B. Nekatere države OECD imajo manj kot 90-odstotni delež cepljenih otrok proti davici, tetanusu, oslovskemu kašlju, ošpicam in hepatitisu B.

Kazalniki deležev cepljenosti prikazujejo delež cepljenih otrok (precepljenost), obveznih za cepljenje proti ošpicam, davici, tetanusu, oslovskemu kašlju in hepatitisu B (Zakon o nalezljivih bolezni):

- obvezni za cepljenje proti ošpicam so bili v letu 2016 (2017) otroci, rojeni v letu 2015 (2016) od dol younger from 12 mesecov starosti do dol younger from 18 mesecov starosti;

Precepljenost za leta 2014–2017 je bila ocenjena na podlagi agregiranih podatkov, ki so jih poslali izvajalci cepljenja (tabela 2). Pri izračunu deleža cepljenih obveznikov proti določeni bolezni je v števcu število cepljenih obveznikov, v imenovalcu pa število vseh otrok, obveznih za cepljenje proti tej bolezni. S primerjavo števil obveznikov za cepljenje, ki so jih poslali izvajalci, in številom živorojenih otrok iz Centralnega registra prebivalstva, rojenih v enakem časovnem obdobju, smo ugotovili, da je bila v oceno precepljenosti zajeta večina otrok obveznih za cepljenje, kar zagotavlja natančnost ocene.

Precepljenost proti navedenim boleznim je že nekaj let zapored na državni ravni relativno visoka, več kot 90 % (razen za hepatitis B), večjih odstopanj ni. Trenutno še zagotavlja dobro zaščito pred vnosom in širjenjem nekaterih od omenjenih nalezljivih bolezni v našo državo. Za vzpostavitev kolektivne imunosti proti ošpicam je zelo pomembno doseči vsaj 95-odstotno precepljenost. Izbruhu nalezljivih bolezni, ki jih preprečujemo s cepljenjem (v zadnjem času predvsem ošpice), se pojavljajo v Evropi in drugod po svetu. Zelo pomembno je vzdrževanje visoke precepljenosti našega prebivalstva zaradi morebitnega vnosa v državo.

V primerjavi s članicami OECD je bila stopnja precepljenosti proti davici, tetanusu, oslovskemu kašlju in ošpicam v letu 2015 na podobni ravni povprečja OECD, proti hepatitisu B pa manjša od povprečja OECD (1).

<table>
<thead>
<tr>
<th>BOLEZEN</th>
<th>DELEŽ CEPLJENIH OTROK, OBVEZNIH ZA CEPLJENJE (%)</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>OŠPICE, MUMPS IN RDEČKE</td>
<td></td>
<td>93,7</td>
<td>93,5</td>
<td>92,3</td>
<td>93,2</td>
</tr>
<tr>
<td>DAVICA, TETANUS IN OSLOVSKI KAŠELJ</td>
<td></td>
<td>94,9</td>
<td>94,8</td>
<td>94,1</td>
<td>94,2</td>
</tr>
<tr>
<td>HEPATITIS B</td>
<td></td>
<td>88,6</td>
<td>88,8</td>
<td>87,8</td>
<td>88,7</td>
</tr>
</tbody>
</table>

Precepljenost je glede na poslane podatke še vedno zelo nizka in ne dosega cilja, ki ga je pred leti postavila SZO (1). Na podlagi pridobljenih podatkov spadam v Evropske države v najnižjim deležem cepljenih starejših oseb proti gripi.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11,0</td>
<td>10,4</td>
<td>9,8</td>
<td>11,7</td>
<td></td>
</tr>
</tbody>
</table>
KK12, 13 IN 14 – INCIDENCA OŠPIC, OSLOVSKEGA KAŠLJA IN HEPATITISA B

Kazalnik incidenca ošpic, oslovskega kašlja in hepatitisa B kažejo obovelvnost za ošpicami, oslovskim kašljem in akutnim hepatitisom B. Izračunani so na osnovi prijavljenih primerov bolezni v posameznih letih (tabela 4).

Pri izračunu incidenčne stopnje posamezne bolezni je v števcu število prijavljenih primerov bolezni v posameznih letih, v imenovalcu pa število vseh prebivalcev Slovenije v istem letu (izražena kot število primerov/100000 prebivalcev).

Incidenčna stopnja ošpic kaže na zelo dobro obvladovanje ošpic v zadnjih letih. Ošpice se pojavljajo redko. V primeru izbruha bolezni gre največkrat za vnesene primere, ob katerih se pojavijo posamezni primeri, medtem ko do večjega širjenja bolezni zaradi dobre precepljenosti ne prihaja.

<table>
<thead>
<tr>
<th>LETO</th>
<th>OSLOVSKI KAŠELJ</th>
<th>OŠPICE</th>
<th>AKUTNI HEPATITIS B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>št. primerov</td>
<td>inc. stopnja</td>
<td>št. primerov</td>
</tr>
<tr>
<td>2009</td>
<td>442</td>
<td>21,6</td>
<td>0</td>
</tr>
<tr>
<td>2010</td>
<td>611</td>
<td>29,8</td>
<td>2</td>
</tr>
<tr>
<td>2011</td>
<td>284</td>
<td>13,8</td>
<td>22</td>
</tr>
<tr>
<td>2012</td>
<td>178</td>
<td>8,7</td>
<td>2</td>
</tr>
<tr>
<td>2013</td>
<td>169</td>
<td>8,2</td>
<td>1</td>
</tr>
<tr>
<td>2014</td>
<td>399</td>
<td>19,4</td>
<td>52</td>
</tr>
<tr>
<td>2015</td>
<td>68</td>
<td>3,3</td>
<td>18</td>
</tr>
<tr>
<td>2016</td>
<td>127</td>
<td>6,2</td>
<td>1</td>
</tr>
<tr>
<td>2017</td>
<td>214</td>
<td>10,4</td>
<td>8</td>
</tr>
</tbody>
</table>

Literatura:

UČINKOVITOST ZDRAVSTVENE OSKRBE

KK21 – RAZJEDE ZARADI PRITISKA

Razjede zaradi pritiska (preležanine ali dekubitusi) so območja lokaliziranih poškodb kože in podkožnih tkiv, ki jih povzročajo pritisk, strižne sile in/ali njihova kombinacija. Običajno se pojavijo na izpostavljenih predelih telesa, kjer kost pritiska na mehka tkiva. Pogostejše so pri težko bolnih bolnikih, bolnikih z nevrološkimi obolenji, osebah z zmanjšano gibljivostjo, podhranjenih, osebah s čezmerno telesno težo, slabo držo, pri osebah, ki veliko sedijo oz. ležijo in imajo neustrezno vzmetnico, ki ne omogoča zmanjšanja pritiska.

Raziskave so prikazale, da so razjede zaradi pritiska pomembno breme bolezni in zmanjšujejo kakovost življenja bolnikov, njihovih skrbnikov ter družin (1–3). Bolniki pogosto potrebujejo dolgotrajno zdravstveno oskrbo, trpijo močne bolečine, neugodje in neprijetnosti (4–6). Povezane so s povečano incidenco okužb, vključno z osteomielitisom (7). Pri starejših bolnikih, hospitaliziranih v enotah za intenzivno terapijo ali nego, so razjede zaradi pritiska povezane z od 2- do 4–krat večjim tveganjem smrti (8, 9).

Dosedanje zbiranje podatkov je izboljšalo kulturo postopkov preprečevanja in spremljanja razjed zaradi pritiska. V večini bolnišnic so bili uvedeni postopki preprečevanja nastanka razjed zaradi pritiska, kot so ocena bolnišnice preprečevanja nastanka razjed zaradi pritiska, kot so ocena bolniškega tveganja za nastanek razjed s pomočjo lestvice, spremljanje kazalnikov kakovosti, notranji nadzori, oblikovanje dokumentacije in standardizirani postopki za izvajanje procesa.

Neposredna primerjava podatkov med bolnišnicami še vedno ni mogoča zaradi neenotnega poročanja o razjedah zaradi pritiska na tipičnih oz. netipičnih mestih.

Dosedanje zbiranje podatkov je pripomoglo k izboljšanju povednosti podatkov in njihovi primerljivosti za tipična mesta nastanka RZP. Razlike in dileme ostajajo pri RZP na netipičnih mestih, kot so za ušesi, nos, nosnica, lice, uho, čelo, penis, koren nosu, vhod v uretro, sp. ustnica.

Prikazani so ločeni podatki za splošne bolnišnice, oba univerzitetno klinična centra in specialne bolnišnice (slike 12–15).
Slika 12: Stopnja razjed zaradi pritiska (RZP) na 100 sprejemov v splošnih bolnišnicah v Sloveniji v letu 2016.

Slika 13: Stopnja RZP na 100 sprejemov v specializiranih bolnišnicah v Sloveniji v letu 2016.
Slika 14: Stopnja RZP na 100 sprejemov v splošnih bolnišnicah v Sloveniji v letu 2017.

Slika 15: Stopnja RZP na 100 sprejemov v specializiranih bolnišnicah v Sloveniji v letu 2017.
Literatura:

KK22 – ČAKALNA DOBA ZA CT

Pri vrednotenju kazalnika se dopušča možnost, da se (kljub izdanim obrazcem in navodilom) izvajalci še vedno razlikujejo v načinu spremljanja kazalnika, kar je lahko vir pristranskosti pri primerjavah.

Literatura:

Ob tem še vedno obstaja tveganje napačnega razumevanja metodologije zbiranja podatkov. Če npr. primerjamo povprečno trajanje operacije in izkoriščenost operacijske dvorane v letu 2017, je mogoče opaziti šibko korelacijo (slika 19). Če bi se korelacija izkazala za statistično značilno, bi lahko sklepal, da je različno trajanje operacije delni razlog za razliko v izkoriščenosti operacijske dvorane. Vendar primerjave podatkov v letu 2016 ne nakažejo morebitne korelacije (slika 18). Pri bolnišnicah s podobnim naborom dejavnosti se postavi vprašanje, ali so različne dolžine operacij posledica razlik v praksi ali izraz drugačnih metodologij spremljanja.

Vse bolnišnice z operacijskimi dvoranami niso poslale podatkov za leti 2016 in 2017. V obdelavah so vključene bolnišnice, ki so poslale podatke vsaj za eno četrtiletje v dvoletnem obdobju. V obdelavo niso bili vključeni Onkološki inštitut, Medicor in Bolnišnica Postojna.

![Graph showing the relationship between average operation duration and operating room utilization in certain Slovenian hospitals in 2016.](image)

\[R^2 = 4E-06 \]

![Graph showing the relationship between average operation duration and operating room utilization in certain Slovenian hospitals in 2017.](image)

\[R^2 = 0.3581 \]

$R^2 = 0.0078$
Kazalnik trajanja bivanja v bolnišnici je lahko kazalnik učinkovitosti zdravstvene oskrbe. Krajše bolnišnično bivanje je v primerljivih zdravstvenih stanjih lahko kazalnik boljšega obvladovanja procesov in s tem večje učinkovitosti zdravstvene oskrbe. Dokazano je, da krajše akutno bolnišnično bivanje in bivanje na neakutnem oddelku zmanjšata bivalne stroške. Hkrati pa lahko prekratko bolnišnično bivanje pomeni večje tveganje za bolnika, zlasti v primeru nepripravljenosti svojcev na predčasen prihod bolnika v domače okolje.

Vprašanje domače oskrbe poudarja eno izmed omejitev kazalnika. Z merjenjem bolnišničnega bivanja ocenjujemo le trajanje akutne bolnišnične oskrbe. Po končani akutni bolnišnični oskrbi je bolnik lahko odpuščen v domačo oskrbo ali institucijo (npr. negovalni oddelek oz. neakutna obravnava, rehabilitacijski inštitut, zdravilišče, dom starejših občanov).

Številni dejavniki vplivajo na meddržavne razlike v trajanju bolnišničnega bivanja. Kombinacija velikega števila postelj in strukture bolnišničnih plačil lahko privede do podaljšanega bolnišničnega bivanja. Številne države so uvedle plačila temeljena na diagnostičnih skupinah (v Sloveniji skupine primerljivih primerov – SPP). Tak način plačila spodbuja k zmanjšanju stroškov posamezne bolnišnične oskrbe in s tem h krajšim bolnišničnim bivanjem. K skrajšanju bolnišničnega bivanja bi lahko prispevalo tudi strateško zmanjšanje števila postelj skupaj z razvojem družbenih služb zdravstvenega varstva. Druge možnosti, ki bi lahko privedle do krajših bolnišničnih bivanj, so promocija manj invazivnih kirurških posegov, širitev programov za zgodnjo bolnišnično odpustitev in nadaljevanje oskrbe na domu ter podpora bolnišnicam za izboljšanje koordinacije oskrbe.

Le nekatere države zbirajo podatke odloženih odpustov (bolnišnično bivanje po končani obravnavi). Ti podatki so natančen kazalnik nepotrebnega dolgotrajnega bolnišničnega bivanja. Z vidika izvajalca se ne zdi pošteno primerjati trajanje bolnišničnega bivanja med ustanovami, ki se razlikujejo npr. po prisotnosti negovalnega oddelka, razpoložljivosti prostora v domovih starejših občanov ali pričakovanju bolnikov in svojcev glede odpustnega zdravstvenega stanja, ki naj bi bilo sprejemljivo za bolnika in svojce. Slednje je običajno pogojeno z lokalnimi običaji.

Pri izračunu različnih kazalnikov trajanja bolnišničnega bivanja niso upoštevane razlike v bolnikovih zdravstvenih stanjih, razen glavne diagnoze in posega, ki sta vključitveno merilo posameznega izračuna. Metodologija izračuna ne upošteva nobene metode za ocenjevanje zahtevnosti primerov na podlagi dodatnih podatkov o posameznem bolniku. To vsekakor pomeni pomembno omejitev pri interpretaciji kazalnika. V nekaterih primerih je bila uporabljena izračunana povprečna utež SPP za grobo oceno razlik v zahtevnosti primerov.
HOLECISTEK TOMIJA

V analizi so bili izključeni izvajalci z manj kot 15 hospitalizacijami v letih 2016 in 2017 (*slika 23*). Ponovno so se pokazale med bolnišnične razlike v povprečnem trajanju akutnega bolnišničnega bivanja zaradi holecistektomije. Pokazal se je tudi trend zmanjševanja povprečnega trajanja bolnišničnega bivanja. Poleg tega se je ponovno pokazala izrazita povezava med povprečno utežjo SPP in trajanjem bivanja v bolnišnici (*slika 24 in 25*). Ob predpostavki, da je utež posameznega SPP primera kazalnik njegove zahtevnosti, se daljše trajanje bolnišničnega bivanja lahko poveže z zahtevnejšimi primeri.

Slika 24: Povprečna utež SPP in povprečno trajanje akutnega bolnišničnega bivanja pri bolnikih z izvedeno holecistektomijo po izvajalcih v letu 2016.
PLJUČNICA DOMAČEGA OKOLJA

Tabela 5: Temeljne značilnosti akutnih obravnav z izvedbo premostitvene operacije na koronarnih arterijah v letu 2017.

IZVAJALEC	ŠTEVILO PRIMEROV	POVPREČNO TRAJANJE BOLNIŠNIČNEGA BIVANJA (DNI)	POVPREČNA STAROST BOLNIKOV
Univerzitetni klinični center Ljubljana | 368 | 21,87 | 68,13
Univerzitetni klinični center Maribor | 126 | 24,20 | 67,07
MC Medicor | 156 | 13,66 | 67,31
Skupaj | 650 | 20,35 | 67,73

ZLOM KOLKA

TONZILEKTOMIJA IN ADENOIDEKTOMIJA

Povprečna trajanja akutnega bolnišničnega bivanja zaradi tonzilektomije ali adenoidetomije se med izvajalci pomemben razlikuje, vendar je v splošnem kontekstu sorazmerno kratkotrajno (slika 31).
MOŽGANSKA KAP

Razlike v povprečni ležalni dobi so v primerjavi s prejšnjimi leti še vedno izrazite. Ponovno je treba upoštevati letne variabilnosti podatkov.
KK25 – STOPNJA SPREJEMOV ZARADI SLADKORNE BOLEZNI

Vodenje sladkorne bolezni zahteva veliko samonadzor. Zelo pomembni so nasveti in učenje. Učinkovite kontrole ravni krvne glukoze, modifikacije diete in redna telesna vadba lahko zmanjšajo tveganje za resne komplikacije in potrebo po hospitalizaciji.

V preteklosti sta se glede preprečljivih bolnišničnih sprejemov zaradi sladkorne bolezni uporabljala kazalnika stopnja sprejemov zaradi akutnih in kroničnih zapletov sladkorne bolezni. Po novi definiciji OECD iz leta 2017 se uporablja le kazalnik, ki je definiran kot število bolnišničnih sprejemov s primarno diagnozo sladkorna bolezen med ljudmi, starimi 15 let ali več na 100000 prebivalcev.

Kazalnik stopnja sprejemov zaradi sladkorne bolezni je kazalnik uspešnosti ambulantnega vodenja bolnikov s sladkorno boleznijo. Predvideva se, da so bolniščni sprejem redki.

Podatki so standardizirani po starosti in spolu. V števcu kazalnika so bile upoštevane diagnoze akutnih in kroničnih zapletov sladkorne bolezni, ki so bile označene kot glavne diagnoze. Sekundarne diagnoze niso bile upoštevane. Mogoče razlage za opažene trende so špekulativne narave in vključujejo dejanske spremembe v ambulantni oskrbi na primarni in/ali sekundarni ravni in tudi spremembe v praksah kodiranja bolezenskih stanj.

KK28 – STOPNJA AMPUTACIJ SPODNJIH OKONČIN ZARADI SLADKORNE BOLEZNI

Sladkorna bolezen je glavni vzrok netravmatskih amputacij spodnjih okončin. Amputacije spodnjih okončin zaradi sladkorne bolezni izražajo dolgotrajno kakovost vodenja sladkorne bolezni.

Kazalnik je definiran kot število sprejetih bolnikov, starejših od 15 let in več, zaradi amputacije spodnjih okončin na 100000 prebivalcev za splošno populacijo, starejšo od 15 let, in ocenjeno populacijo s sladkorno bolezni. Vrednosti so starostno standardizirane (slika 34).

Razvidno je, da se stopnja amputacij spodnjih okončin od leta 2011 postopoma zmanjšuje, kar je v državah OECD opazno že od leta 2000, vendar je še vedno višja od povprečja držav OECD (1).

Diagram Groba stopnja amputacij spodnjih okončin zaradi sladkorne bolezni na 100000 prebivalcev prikazuje, da je najvišja stopnja amputacij spodnjih okončin zaradi sladkorne bolezni v savinjski regiji, najnižja pa v obalno-kraški (slika 35).

Starostno standardizirana stopnja amputacij spodnjih okončin zaradi sladkorne bolezni za leta 2015–2017 ne prikazuje le različnega časovnega regionalnega trenda stopenj amputacij spodnjih okončin zaradi sladkorne bolezni, ampak lahko kaže regionalne razlike pri vodenju dejanskih razlogov amputacij spodnjih okončin (slika 36). Če je sladkorna bolezen dejanski vzrok za amputacije spodnjih okončin, bi na morebitne regionalne razlike lahko vplivali različni dejavniki, npr. prevalenca sladkorne bolezni. Podobno bi lahko veljalo za iskanje vzrokov za razlike v povprečni stopnji amputacij spodnjih okončin zaradi sladkorne bolezni med Slovenijo in državami OECD.

Literatura:

KK36 - POŠKODBE MED VAGINALNIM PORODOM

Med porodom lahko pride do potencialno preprečljivih raztrganin presredka (1). Pogosteje se zgodijo pri prvem vaginalnem porodu, pri sproženem porodu, rojstvu otroka z visoko porodno težo ali v zadnjični legi, pri dolgi drugi porodni dobi in uporabi instrumentov. Po oskrbi raztrganine lahko ostanejo stalne bolečine in inkontinenca. Taki vrst raztrganin v vseh primerih ni mogoče preprečiti, njihovo pogostnost pa je mogoče zmanjšati z visokokakovostnim obporodnim varstvom (2).

Delež poškodb presredka ob vaginalnem porodu je uporaben kazalnik kakovosti obporodnega varstva. Pojmuje se kot relativno zanesljiv in primerljiv med državami.

Pri izračunu kazalnika je bila uporabljena metodologija OECD, ki zbira podatke o istoimenskem kazalniku v okviru projekta HCQI (Health Care Quality Indicators). Kazalnik prikazuje delež poškodb presredka tretje in četrte stopnje (MKB 10 kodi O70.2 in O 70.3) pri vaginalnih porodih porodnic, starih 15 let in več. Kazalnik se podrobneje deli na vaginalni porod brez inštrumentov in vaginalni porod s pomočjo uporabe inštrumentov (vakuum, forceps, itn.).

Perinatalni informacijski sistem (PIS) je bil uporabljen kot vir podatkov. Vključuje podatke o vseh porodičnih in rojstvih v 14 slovenskih porodnišnicah. Podatki o porodnih poškodbah se v PIS beležijo pod rubriko »Poškodbe porodne poti«. Do leta 2012 je bil uporabljan nekoliko prirejen šifrant kod MKB 10, ki pa se v primeru poškodbe presredka 3. in 4. stopnje, dobro ujema z originalno klasifikacijo. Od leta 2013 je šifrant popolnoma usklajen z novo klasifikacijo MKB 10 AM.

V primeru nadaljevanja takega trenda bo potrebna natančna preučitev vzrokov ter opredelitev ali v kolikšni meri je povezan s precejšnjim znižanjem deleža epiziotomij v zadnjem desetletju.

*Vključeni so porodi porodnic, starih 15 let in več.

Literatura:

KK37 – DELEŽ CARSKIH REZOV

Delež carskih rezov v večini evropskih držav še vedno narašča (OECD Health Statistics: Health care utilisation, Caesarean section) (1). SZO od leta 1985 priporoča delež carskih rezov med 10 in 15 % in tudi v zadnji reviziji priporočil iz leta 2015 ugotavlja, da naraščanje deleža carskih rezov nad te vrednosti ne prispeva k zmanjševanju maternalne in neonatalne umrljivosti (2).

V Sloveniji je bil delež carskih rezov v zadnjem desetletju pod povprečjem EU, vendar je bil še vedno beležen precej strm trend rasti, posebej v nekaterih porodnišnicah, ki pa se po letu 2014 umirja (slika 38). Z večanjem deleža carskih rezov narašča tudi tveganje zapletov, kot so predležeča posteljica, ki je lahko tudi vraščena, večja krvavitev ob tem in naslednjem porodu ter ponovni carski rez (3, 4).

Kazalnik delež carskih rezov prikazuje delež živorojenih otrok, rojenih s carskim rezom, pri čemer so izključeni porodi z večjim tveganjem za carski rez (prezgodnji porod, smrt ploda, večplodna nosečnost, medenična vstava, nenormalna lega ploda). Za vir podatkov je bil uporabljen Perinatalni informacijski sistem (PIS), v katerem se podatki o carskem rezu beležijo pod rubrico »operativno dokončanje poroda«.

Leta 2017 je bil delež carskih rezov v opisani populaciji 16,6 % (0,7 odstotne točke več kot leto prej) in se je med porodnišnicami gibal od 7,0 % na Jesenicah do 28,1 % v Trbovljah (slika 39). Ti dve porodnišnici najbolj odstopata po deležu carskega reza od ostalih porodnišnic, kjer se je v letu 2017 večinoma gibal med 15 in 20 %. V primerjavi z letom 2007 se je delež carskih rezov povečal za 35 %. Med porodnišnicami so bile razlike zelo velike, v nekaterih je delež carskih rezov v zadnjem desetletju porasel za več kot dvakrat. Na Jesenicah so leta 2017 beležili celo bistveno nižji delež carskih rezov kot leta 2007 (slika 40).

Problematicne naraščanja deleža carskih rezov se zaveda tudi ginekološko porodniška stroka v Sloveniji, ki je v letu 2016 organiziral strokovni posvet na temo carskega reza, kjer so zbrani strokovnjaki skušali identificirati vzroke takšnega trenda (5). V naslednjih letih se bo video, kaj se bo dogajalo s trendom carskega reza in predvsem ali bodo še vedno vztrajale velike razlike med porodnišnicami.

*Sključeni so živorojeni enojčki z gestacijsko starostjo 37 tednov in več, v zatilni ali temenski glavični vstavi.

*Sključeni so živorojeni enojčki z gestacijsko starostjo 37 tednov in več, v zatilni ali temenski glavični vstavi.

*Vključeni so živorojeni enojčki z gestacijsko starostjo 37 tednov in več, v zatilni ali temenski glavični vstavi.

Literatura:

1. OECD Health Statistics: Health care utilisation, Caesarean section.
Kazalniki 30-dnevne smrtnosti zaradi akutnega miokardnega infarkta in možganske kapi prikazujeta stopnje smrtnosti bolnikov, hospitaliziranih zaradi akutnega miokardnega infarkta, ishemične in hemoragične možganske kapi v 30 dneh od bolnišničnega sprejema. Upoštevani so vsi primeri smrti, ki so se zgodili v bolnišnici ali po odpustu iz nje. Vrednosti so izračunane v skladu z metodologijo OECD. Vključeni so le bolniki, stari 45 let in več. Podatki so za celotno Slovenijo standardizirani po starosti in spolu med letoma 2009 in 2017.

Smrt v 30 dneh od bolnišničnega sprejema se pripiše zadnjemu izvajalcu, ki je bolnika obravnaval, zaradi česar kazalnika lahko ne prikažeta dejanskega stanja bolnikove obravnave po posameznih izvajalcih. V trenutnem letnem poročilu je prikazana le obravnava na nacionalnem nivou.

Podatki se zaradi sprememb v metodologiji izračuna nekoliko razlikujejo od podatkov, prikazanih v predhodnem poročilu za leti 2014 in 2015.

KK45 – ČAKANJE NA OPERACIJO V BOLNIŠNICI PO ZLOMU KOLKA (65+)

Glavni dejavniki tveganja zloma kolka so povezani s starostjo, kot so izguba telesne moči zaradi osteoporoze in starostno povečano tveganje padcev. Glede na pričakovano podaljšanje življenjske dobe je mogoče pričakovati povečanje javnega problema zloma kolka.

Večina primerov zloma kolka potrebuje operativni poseg zaradi popravila ali zamenjave kolčnega sklepa. Znano je, da zgodnji kirurški poseg znatno izboljša končni izhod in zmanjša tveganje komplikacij. Uspešna zgodnja izvedba operacije je odvisna od številnih dejavnikov, zlasti od organizacijskih sposobnosti izvajalca zdravstvenih storitev.

Kazalnik čakanje na operacijo v bolnišnici po zlomu kolka je definiran kot delež bolnikov, ki so stari 65 let ali več in so bili sprejeti v določenem letu z diagnozo zloma zgornjega dela stegevanca ter so imeli operativni poseg v 2 koledarskih dneh po sprejemu. Po novih smernicah OECD 2016–2017 so izključeni pravljici, ki so se zgodili po bolnišničnem sprejemu, in primeri manjkajočih ali nepravilnih postopkovnih podatkov. Na tem mestu je treba povedati, da podatkov o tem, ali je bila diagnoza zlom kolka postavljena pred ali med bolnišničnim sprejemu ali po njem, ni.

Nacionalne podatkovne zbirke ne omogočajo prepoznavanje stanj, ki so prisotna ob sprejemu. Glavna diagnoza služi le za grobo oceno primerov, ki so bili bolnišnično sprejeti zaradi zloma kolka. Predpostavka je, da je zlomov kolka po bolnišničnem sprejemu sorazmerno malo.

Slika 44 prikazuje velike medletne razlike nekaterih bolnišnic. Letna variabilnost je vsaj delno posledica nizkega skupnega števila primerov. Izključili smo tiste izvajalce, ki so obravnavali manj kot 10 primerov zloma kolka. Zaradi pričakovane vpliva števila primerov na vrednost, doseženo pri tem kazalniku, podatke za leta 2015–2017 prikazujemo v obliki lijakastega diagrama, ki omogoča prepoznavanje tistih primerov, ki pomembno odstopajo od pričakovanih vrednostih. Pri takem prikazu izstopa SB Jesenice z visokim deležem operacij, opravljenih v 2 dneh od sprejema, in SB dr. Franca Derganca z nizkim deležem takih operacij (**slika 45**).

Literatura:

Pooperativna venska tromb(embolija) se največkrat kaže z globoko vensko trombozo (GVT) in/ali pljučno embolijo (PE). Zadnje navedena pogosto ostane neodkrita. Obe stanji sta dva izmed najpogostejših smrtno nevarnih zapletov, ki lahko nastopijo po operativnem posegu. Tveganje za pooperativno vensko tromb(embolijo) je odvisno od bolnikovih dejavnikov tveganj za trombembolijo, vrste kirurškega posega in prikritih zdravstvenih težav. Lahko ga znatno zmanjšamo s številnimi profilaktičnimi ukrepi, farmakološkimi (antikoagulantna terapija) in nefarmakološkimi (zgodnja mobilizacija). Delež primerov pooperativnih trombembolij predstavlja pomemben rezultat ukrepov za bolnikovo varnost med kirurškimi posegi.

Opazen je trend zmanjševanja stopnje primerov PE ob vstavitvi kolčne ali kolenske endoproteze, medtem ko je pri stopnji primerov GVT prišlo do znatnega prehodnega padca v letu 2016 in ponovnega povečanja v letu 2017, kar vzbujeta dvom v natančnost spremljanja ali pošiljanja podatkov (sliki 46 in 47).

Pomembna omejitev interpretacije podatkov je tudi nezmožnost ločitve diagnoz ob sprejemu in odpustu. Na podlagi izvedenih posegov in diagnoze GVT ali PE lahko se le sklepa o pooperativnem dogodku zavedajoč se možnosti utrpele GVT ali PE ob sprejemu.

Bolnišnice pooperativne GVT in PE spremljajo posamično in o tem poročajo MZ. Izračunane stopnje pooperativnih zapletov so med bolnišnicami zaradi redkosti GVT in PE iz leta v leto zelo različne, zato medbolnišnične primerjave niso prikazane. Vendar je vseeno opazna medbolnišnična razlika v letnem številu GVT in PE. Nekatere bolnišnice naj že dalj časa ne bi imele primerov GVT ali PE. Ponovno se vzbuja dvom v natančnost spremljanja in pošiljanja podatkov. Hkrati bi to lahko kazalo na učinkovit sistem obvladovanja venskih tromb(emboličnih) zapletov v tistih bolnišnicah, kjer primerov niso beležili. Verjetno pa je tudi, da imajo bolnišnice z zabeleženimi primeri boljši sistem spremljanja.

V primerjavi z letom 2015 se je poraba antibiotikov (J01) v letu 2016 v primerjavi z letom 2015 zvišala z 51,87 na 51,96 DDD/100 BOD (0,2 %), 1,67 na 1,68 DDD/1000 prebivalcev/dan (0,6%) in 326,2 na 332,37 DDD/100 sprejemov (1,9 %). Poraba, izražena v DDD/1000 prebivalcev/dan, nas po podatkih ECDC uvršča na 9. mesto med 24 državami Evropske unije (EU) in Evropskega gospodarskega prostora (EGP) (Islandija, Norveška). Povprečna poraba v 24 državah EU je bila 2,1 DDD/1000 prebivalcev/dan, z razponom od 1,0 do 2,9 DDD/1000 prebivalcev/dan. Najvišjo porabo je imela Malta. Slovenija spada v skupino 3 držav (Grčija, Malta, Slovenija), ki so povečale porabo v obdobju 2012–2016.

Poraba protiglivih zdravil za sistemsko rabo (J02) se je v letu 2016 v primerjavi z letom 2015 znižala za 0,8 %, in sicer z 2,60 na 2,58 DDD/100 BOD, raba protivirusnih zdravil (J05) pa se je povečala za 4,8 %, z 0,83 na 0,87 DDD/100 BOD.

Poraba antibioticov na nacionalni ravni je bila v letu 2017 višja kot v letu 2016 (tabela 6 in 7). V primerjavi z letom 2016 se je z 51,96 DDD/100 BOD povečala na 52,45 DDD/100 BOD (0,9 %) (slika 48). Prav tako se je povečala tudi glede DDD/100 sprejemov, in sicer s 332,37 na 334,68 DDD/100 sprejemov (0,7 %) (slika 49) in DDD/1000 prebivalcev/dan z 1,68 na 1,70 DDD/1000 prebivalcev na dan (1,2 %). Po podatkih ECDC iz leta 2017 nas poraba uvršča na 7. mesto med 22 državami EU in EGP. Povprečna poraba v 24 državah EU je bila 2,0 DDD/1000 prebivalcev/dan z razponom od 0,9 na Nizozemskem in 3,1 DDD/1000 prebivalcev/dan na Malti. Na slikah 50 in 51 sta prikazani porabi protiglivih zdravil za sistemsko rabo in protivirusnih zdravil v letu 2017.

Bolnišnični farmacevti ali drugo osebje, zaposlene v lekarnah manjših bolnišnic, posredujajo podatke o porabi protimikrobnih zdravil. Število BOD in sprejemov pošiljajo Nacionalni inštitut za javno zdravje (NIJZ). Podatki o številu BOD in sprejemov na oddelke velikokrat niso pravilni, ker se ne upoštevajo premestitve med posameznimi oddelki. Bolnišnice tudi ne ločujejo porabe protimikrobnih zdravil med hospitaliziranimi in ambulantno oz. enodnevno bolnišnično oskrbovanimi bolniki. Prihodnost spremljanja porabe je v elektronskem spremljanju.

Slovenija ima dobro vzpostavljeno mrežo spremljanja bolnišnične porabe protimikrobnih zdravil. Spremlja se poraba v vseh 29 bolnišnicah ter na petih oddelkih splošnih in univerzitetnih bolnišnic. Glavna pomanjkljivost spremljanja je v tem, da se popolnoma ne ločuje poraba med hospitaliziranimi in ambulantno oz. enodnevno bolnišnično oskrbovanimi bolniki. Nacionalna komisija za smotrno rabo
protimikrobnih zdravil spremlja rezultate porabe protimikrobnih zdravil za načrtovanje bolnišničnih nadzorov in bolnišnične komisije za zdravila ali antibiotike. Bolnišnice prejmejo podatke, obdelane po enotni metodologiji. Lahko jih uporabijo za primerjaj med bolnišnicami in bolnišničnimi oddelki istega tipa. Čeprav bolnišnice porabijo le od 10 do 20 % celotne porabe antibiotikov v državi, so zaradi narave bolnikov epicenter za nastajanje odpornih bakterij proti antibiotikom. V nacionalni strategiji smotrne rabe protimikrobnih zdravil 2019–2024 je bil zastavljen cilj znižati celotno porabo antibiotikov v bolnišnicah za 10 % in izboljšati predpisovanje širokospektralnih antibiotikov. Posebno skrb moramo nameniti predpisovanju kritično pomembnih antibiotikov, kot so cefalosporini 3. in 4. generacije, fluorokinoloni in karbapenemi. Za znižanje odpornosti gramnegativnih bakterij proti cefalosporinom, kinolonom in karbapenemom bi morali znižati porabo teh skupin antibiotikov (protipsevdomonasnih karbapenemov) na 1,5 DDD/100 BOD. V Sloveniji je bila v letu 2017 povprečna poraba cefalosporinov 3. generacije 2,43 DDD/100 BOD, fluorokinolonov 6,97 DDD/100 BOD in protipsevdomonasnih karbapenemov 1,44 DDD/100 BOD. Višja je povprečna poraba teh antibiotikov v SB in obeh UKC. Brez znižane porabe ne moremo pričakovati znižane odpornosti bakterij.
Tabela 6: Poraba (DDD/100 BOD) antibiotikov za sistemsko rabo (J01) na oddelkih splošnih bolnišnic (n = 10) in UKC (n = 2) v letu 2016.

<table>
<thead>
<tr>
<th>ODDELEK</th>
<th>POVPREČJE</th>
<th>NAJNIŽJA PORABA</th>
<th>NAJVIŠJA PORABA</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERNI</td>
<td>66,95</td>
<td>56,44 (SB Trbovlje)</td>
<td>78,77 (SB Celje)</td>
</tr>
<tr>
<td>KIRURGIJA</td>
<td>63,74</td>
<td>47,59 (SB Ptuj)</td>
<td>83,26 (UKC Ljubljana)</td>
</tr>
<tr>
<td>GINEKOLOGIJA</td>
<td>32,85</td>
<td>13,85 (SB Novo mesto)</td>
<td>51,35 (SB Nova Gorica)</td>
</tr>
<tr>
<td>PEDIATRIJA</td>
<td>41,95</td>
<td>22,54 (SB Jesenice)</td>
<td>56,57 (SB Murska Sobota)</td>
</tr>
<tr>
<td>INTERNISTIČNA INTENZIVNA TERAPIJA</td>
<td>133,44</td>
<td>94,52 (SB Jesenice)</td>
<td>183,68 (UKC Ljubljana)</td>
</tr>
<tr>
<td>KIRURŠKA INTENZIVNA TERAPIJA</td>
<td>188,56</td>
<td>121,17 (SB Trbovlje)</td>
<td>306,4 (UKC Ljubljana)</td>
</tr>
</tbody>
</table>

Tabela 7: Poraba (DDD/100 BOD) antibiotikov za sistemsko rabo (J01) na oddelkih splošnih bolnišnic (n = 10) in UKC (n = 2) v letu 2017.

<table>
<thead>
<tr>
<th>ODDELEK</th>
<th>POVPREČJE</th>
<th>NAJNIŽJA PORABA</th>
<th>NAJVIŠJA PORABA</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERNI</td>
<td>78,34</td>
<td>60,81 (UKC Maribor)</td>
<td>78,34 (SB Ptuj)</td>
</tr>
<tr>
<td>KIRURGIJA</td>
<td>62,54</td>
<td>44,21 (SB Trbovlje)</td>
<td>81,43 (UKC Ljubljana)</td>
</tr>
<tr>
<td>GINEKOLOGIJA</td>
<td>32,85</td>
<td>15,23 (SB Novo mesto)</td>
<td>55,15 (SB Izola)</td>
</tr>
<tr>
<td>PEDIATRIJA</td>
<td>42,63</td>
<td>26,68 (SB Izola)</td>
<td>63,41 (UKC Ljubljana, Pediatrična klinika)</td>
</tr>
<tr>
<td>INTERNISTIČNA INTENZIVNA TERAPIJA</td>
<td>143,81</td>
<td>84,36 (SB Jesenice)</td>
<td>173,65 (SB Izola)</td>
</tr>
<tr>
<td>KIRURŠKA INTENZIVNA TERAPIJA</td>
<td>172,19</td>
<td>107,13 (SB Trbovlje)</td>
<td>340,84 (UKC Ljubljana)</td>
</tr>
</tbody>
</table>
Slika 48: Poraba antibiotikov (J01) v slovenskih bolnišnicah v letu 2017 (DDD/100 BOD).

Slika 49: Poraba antibiotikov (J01) v slovenskih bolnišnicah v letu 2017 (DDD/100 sprejemov).
Slika 50: Poraba protiglivnih zdravil (J02) v slovenskih bolnišnicah v letu 2017 (DDD/100 BOD).

Slika 51: Poraba protivirusnih zdravil (J05) v slovenskih bolnišnicah v letu 2017 (DDD/100 BOD).
VARNOST BOLNIKA IN OSEBJA

KK67 – PADCI

Padci med hospitalizacijo so pogost pojav. Dejavniki tveganja za padce med hospitalizacijo so šibkost, slab kognitivni status in jemanje farmakoterapije, ki lahko privede do padcev (1, 2). Tuje raziskave so prikazale, da se 30% padcev konča s poškodbo, 4–6% z resno (1, 3). Resne poškodbe so zlomi, subduralni hematom, večja krvavitev in celo smrt. Poškodbe zaradi padcev povečajo stroške zdravstvenega varstva.

Število padcev med hospitalizacijo je dober kazalnik bolnikove varnosti. Njihovo število bi se lahko zmanjšalo s sprejetjem preventivnega programa. Preventivna strategija bi lahko zajemala redno ocenjevanje tveganja padcev z napovednimi lestvicami, zaznavo bolnikov z visokim tveganjem padcev, komunikacijo z bolniki ter izobraževanje bolnikov, svojcev in zdravstvenega osebja.

Razlike v pristopih do zbiranja podatkov vseeno še vedno obstajajo in onemogočajo neposredne primerjave. Merjenje kazalnika kakovosti padcev je zato koristno, ker ga bolnišnice prepoznajo kot orodje za ukrepanje in izboljševanje stanja na tem področju. Zaradi dolgoletnega sistematičnega zbiranja podatkov lahko bolnišnice same ugotavljajo, kako izvajajoči ukrepi vplivajo na pojavnost padcev v njihovi ustanovi. Pomembnih razlik v stopnji padcev posameznih bolnišnic v letih 2016 in 2017 ni mogoče opaziti (slike 52 in 53). Vseeno je opazna večja stopnja padcev v določenih bolnišnicah v primerjavi z drugimi (slika 54), tudi v odstotku poškodb ob padcu (tabeli 8 in 9).

Spošte smernice pristopa k obravnavi bolnika s povečanim tveganjem padcev v bolnišnici ni. Treba bi bilo ustanoviti skupino strokovnjakov, ki bi oblikovala in uvedla strokovne smernice na tem področju. Posledično bi lahko bilo padcev med hospitalizacijo manj, zlasti z resnimi poškodbami.

<table>
<thead>
<tr>
<th>Bolnišnica Topolšica</th>
<th>0</th>
<th>144</th>
<th>0,0 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bolnišnica za ginekologijo in porodništvo Kranj</td>
<td>0</td>
<td>3</td>
<td>0,0 %</td>
</tr>
<tr>
<td>Bolnišnica Sežana</td>
<td>5</td>
<td>135</td>
<td>3,7 %</td>
</tr>
<tr>
<td>Inštitut Republike Slovenije za rehabilitacijo</td>
<td>8</td>
<td>135</td>
<td>5,9 %</td>
</tr>
<tr>
<td>Univerzitetni klinični center Ljubljana</td>
<td>350</td>
<td>937</td>
<td>37,4 %</td>
</tr>
<tr>
<td>Mladinsko klimatsko zdravilišče Rakitna</td>
<td>0</td>
<td>26</td>
<td>0,0 %</td>
</tr>
<tr>
<td>Ortopedska bolnišnica Valdoltra</td>
<td>19</td>
<td>50</td>
<td>38,0 %</td>
</tr>
<tr>
<td>Psihiatrična bolnišnica Begunje</td>
<td>0</td>
<td>31</td>
<td>0,0 %</td>
</tr>
<tr>
<td>Psihiatrična bolnišnica Ormož</td>
<td>1</td>
<td>66</td>
<td>1,5 %</td>
</tr>
<tr>
<td>Psihiatrična bolnišnica Vojnik</td>
<td>0</td>
<td>88</td>
<td>0,0 %</td>
</tr>
<tr>
<td>Psihiatrična bolnišnica Idrija</td>
<td>6</td>
<td>68</td>
<td>8,8 %</td>
</tr>
<tr>
<td>Psihiatrična klinika Ljubljana</td>
<td>23</td>
<td>495</td>
<td>4,6 %</td>
</tr>
<tr>
<td>Splošna bolnišnica Brežice</td>
<td>1</td>
<td>61</td>
<td>1,6 %</td>
</tr>
<tr>
<td>Splošna bolnišnica Celje</td>
<td>2</td>
<td>184</td>
<td>1,1 %</td>
</tr>
<tr>
<td>Splošna bolnišnica dr. Franca Derganca Nova Gorica</td>
<td>1</td>
<td>166</td>
<td>0,6 %</td>
</tr>
<tr>
<td>Splošna bolnišnica Izola</td>
<td>13</td>
<td>61</td>
<td>21,3 %</td>
</tr>
<tr>
<td>Splošna bolnišnica Jesenice</td>
<td>4</td>
<td>101</td>
<td>4,0 %</td>
</tr>
<tr>
<td>Univerzitetni klinični center Maribor</td>
<td>22</td>
<td>357</td>
<td>6,2 %</td>
</tr>
<tr>
<td>Splošna bolnišnica Murska Sobota</td>
<td>10</td>
<td>157</td>
<td>6,4 %</td>
</tr>
<tr>
<td>Splošna bolnišnica Novo mesto</td>
<td>2</td>
<td>150</td>
<td>1,3 %</td>
</tr>
<tr>
<td>Splošna bolnišnica dr. Jožeta Potrča Ptuj</td>
<td>3</td>
<td>24</td>
<td>12,5 %</td>
</tr>
<tr>
<td>Splošna bolnišnica Slovenj Gradec</td>
<td>31</td>
<td>64</td>
<td>48,4 %</td>
</tr>
<tr>
<td>Splošna bolnišnica Trbovlje</td>
<td>0</td>
<td>13</td>
<td>0,0 %</td>
</tr>
<tr>
<td>Kirurški sanatorij Rožna dolina d. d.</td>
<td>2</td>
<td>9</td>
<td>22,2 %</td>
</tr>
<tr>
<td>Onkološki inštitut</td>
<td>31</td>
<td>114</td>
<td>27,2 %</td>
</tr>
<tr>
<td>Bolnišnica Topolšica</td>
<td>0</td>
<td>289</td>
<td>0,00 %</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----</td>
<td>-----</td>
<td>--------</td>
</tr>
<tr>
<td>Bolnišnica za ginekologijo in porodništvo Kranj</td>
<td>0</td>
<td>2</td>
<td>0,00 %</td>
</tr>
<tr>
<td>Bolnišnica Sežana</td>
<td>3</td>
<td>148</td>
<td>2,03 %</td>
</tr>
<tr>
<td>Bolnišnica za ženske bolezni in porodništvo Postojna</td>
<td>0</td>
<td>0</td>
<td>0,00 %</td>
</tr>
<tr>
<td>Center za zdravljenje bolezni otrok Šentvid pri Stični</td>
<td>0</td>
<td>0</td>
<td>0,00 %</td>
</tr>
<tr>
<td>Inštitut Republike Slovenije za rehabilitacijo</td>
<td>1</td>
<td>124</td>
<td>0,81 %</td>
</tr>
<tr>
<td>Univerzitetni klinični center Ljubljana</td>
<td>172</td>
<td>972</td>
<td>17,70 %</td>
</tr>
<tr>
<td>Mladinsko klimatsko zdravilišče Rakitna</td>
<td>0</td>
<td>19</td>
<td>0,00 %</td>
</tr>
<tr>
<td>Psihiatrična bolnišnica Begunje</td>
<td>1</td>
<td>27</td>
<td>3,70 %</td>
</tr>
<tr>
<td>Psihiatrična bolnišnica Ormož</td>
<td>5</td>
<td>62</td>
<td>8,06 %</td>
</tr>
<tr>
<td>Psihiatrična bolnišnica Vojnik</td>
<td>0</td>
<td>107</td>
<td>0,00 %</td>
</tr>
<tr>
<td>Psihiatrična bolnišnica Idrija</td>
<td>6</td>
<td>77</td>
<td>7,79 %</td>
</tr>
<tr>
<td>Psihiatrična klinika Ljubljana</td>
<td>24</td>
<td>490</td>
<td>4,90 %</td>
</tr>
<tr>
<td>Splošna bolnišnica Brežice</td>
<td>0</td>
<td>87</td>
<td>0,00 %</td>
</tr>
<tr>
<td>Splošna bolnišnica Celje</td>
<td>2</td>
<td>242</td>
<td>0,83 %</td>
</tr>
<tr>
<td>Splošna bolnišnica dr. Franca Derganca Nova Gorica</td>
<td>2</td>
<td>199</td>
<td>1,01 %</td>
</tr>
<tr>
<td>Splošna bolnišnica Izola</td>
<td>21</td>
<td>44</td>
<td>47,73 %</td>
</tr>
<tr>
<td>Splošna bolnišnica Jesenice</td>
<td>3</td>
<td>67</td>
<td>4,48 %</td>
</tr>
<tr>
<td>Univerzitetni klinični center Maribor</td>
<td>27</td>
<td>456</td>
<td>5,92 %</td>
</tr>
<tr>
<td>Splošna bolnišnica Murska Sobota</td>
<td>10</td>
<td>148</td>
<td>6,76 %</td>
</tr>
<tr>
<td>Splošna bolnišnica Novo mesto</td>
<td>0</td>
<td>154</td>
<td>0,00 %</td>
</tr>
<tr>
<td>Splošna bolnišnica dr. Jožeta Potrča Ptuj</td>
<td>3</td>
<td>17</td>
<td>17,65 %</td>
</tr>
<tr>
<td>Splošna bolnišnica Slovenj Gradec</td>
<td>28</td>
<td>69</td>
<td>40,58 %</td>
</tr>
<tr>
<td>Splošna bolnišnica Trbovlje</td>
<td>3</td>
<td>23</td>
<td>13,04 %</td>
</tr>
<tr>
<td>Kirurški sanatorij Rožna dolina d. d.</td>
<td>2</td>
<td>5</td>
<td>40,00 %</td>
</tr>
<tr>
<td>Onkološki inštitut</td>
<td>48</td>
<td>158</td>
<td>30,38 %</td>
</tr>
</tbody>
</table>

Literatura:

KK71 – MRSA

Kolonizaciji z MRSA so najbolj izpostavljeni bolniki v bolnišnicah in negovalnih ustanovah, ki imajo poleg osnovne bolezni pridružene še druge dejavnike tveganja prenosa, kot so odprte rane, vstavljeni katetri, dolgotrajno ali pogosto bolnišnično zdravljenje, pogosto zdravljenje z antibiotiki, operativni posegi in zdravljenje na oddelku za intenzivno terapijo. MRSA se največkrat prenaša prek rok zdravstvenega osebja, bolnikov in svojcev. Prenos prek površin je mogoč, vendar izjemno redek.

Kazalnik MRSA opredeli delež bolnikov z bolnišnično pridobljeno MRSA v posamezni bolnišnici glede na skupno število bolnikov, pri katerih je bila ugotovljena kolonizacija ali okužba z MRSA v tekočem letu.

V obdelavo podatkov so bile vključene ustanove, ki so poslale popolne in pravilne podatke za vsa četrta letja 2016 in 2017 (tabeli 10 in 11). V nekaterih bolnišnicah je bilo število bolnikov, pri katerih so bili izvedeni presejalni testi za ugotavljanje kolonizacije z MRSA, zelo nizko, kar je lahko vzrok za nizko število ugotovljenih bolnikov, koloniziranih z MRSA. Delež bolnikov, ki so pridobili MRSA v posamezni bolnišnici, glede na skupno število bolnikov, pri katerih je bila ugotovljena prisotnost MRSA v letih 2016 in 2017, prikazujeta slike 55 in 56. Število pregledanih bolnikov in ugotovljenih nosilev MRSA se med bolnišnicami zelo razlikuje zaradi zelo velikih razlik v številu sprejetih bolnikov. Posledično je velika razlika v bremenu, ki ga nosi posamezna bolnišnica.
Tabela 10: Število bolnikov z ugotovljeno MRSA in delež teh bolnikov z bolnišnično pridobljeno MRSA v posamezni bolnišnici v letu 2016.

<table>
<thead>
<tr>
<th>Bolnišnica</th>
<th>Število bolnikov z MRSA</th>
<th>Delež bolnikov, ki so MRSA pridobili v bolnišnici</th>
</tr>
</thead>
<tbody>
<tr>
<td>Splošna bolnišnica dr. Jožeta Potrča Ptuj</td>
<td>66</td>
<td>57,58 %</td>
</tr>
<tr>
<td>Onkološki inštitut</td>
<td>25</td>
<td>48,00 %</td>
</tr>
<tr>
<td>Splošna bolnišnica dr. Franca Derganca Nova Gorica</td>
<td>126</td>
<td>47,62 %</td>
</tr>
<tr>
<td>Splošna bolnišnica Trbovlje</td>
<td>40</td>
<td>32,50 %</td>
</tr>
<tr>
<td>Univerzitetni klinični center Ljubljana</td>
<td>577</td>
<td>21,49 %</td>
</tr>
<tr>
<td>Splošna bolnišnica Novo mesto</td>
<td>118</td>
<td>18,64 %</td>
</tr>
<tr>
<td>Bolnišnica Topolšica</td>
<td>87</td>
<td>16,09 %</td>
</tr>
<tr>
<td>Psihiatrična bolnišnica Ormož</td>
<td>8</td>
<td>12,50 %</td>
</tr>
<tr>
<td>Univerzitetni klinični center Maribor</td>
<td>137</td>
<td>10,95 %</td>
</tr>
<tr>
<td>Splošna bolnišnica Slovenj Gradec</td>
<td>22</td>
<td>9,09 %</td>
</tr>
<tr>
<td>Splošna bolnišnica Jesenice</td>
<td>192</td>
<td>8,85 %</td>
</tr>
<tr>
<td>Splošna bolnišnica Celje</td>
<td>215</td>
<td>8,37 %</td>
</tr>
<tr>
<td>Splošna bolnišnica Murska Sobota</td>
<td>331</td>
<td>7,55 %</td>
</tr>
<tr>
<td>Inštitut Republike Slovenije za rehabilitacijo</td>
<td>78</td>
<td>6,41 %</td>
</tr>
<tr>
<td>Splošna bolnišnica Izola</td>
<td>165</td>
<td>6,06 %</td>
</tr>
<tr>
<td>Bolnišnica Golnik</td>
<td>40</td>
<td>2,50 %</td>
</tr>
<tr>
<td>Bolnišnica za ginekologijo in porodništvo Kranj</td>
<td>1</td>
<td>0,00 %</td>
</tr>
<tr>
<td>Center za zdravljenje bolezni otrok Šentvid pri Stični</td>
<td>0</td>
<td>0,00 %</td>
</tr>
<tr>
<td>Ortopedska bolnišnica Valdoltra</td>
<td>11</td>
<td>0,00 %</td>
</tr>
<tr>
<td>Psihiatrična bolnišnica Begunje</td>
<td>6</td>
<td>0,00 %</td>
</tr>
<tr>
<td>Psihiatrična bolnišnica Vojnik</td>
<td>1</td>
<td>0,00 %</td>
</tr>
<tr>
<td>Psihiatrična bolnišnica Idrija</td>
<td>18</td>
<td>0,00 %</td>
</tr>
<tr>
<td>Psihiatrična klinika Ljubljana</td>
<td>14</td>
<td>0,00 %</td>
</tr>
<tr>
<td>Kirurški sanatorij Rožna dolina d. d.</td>
<td>4</td>
<td>0,00 %</td>
</tr>
<tr>
<td>Medicor</td>
<td>0</td>
<td>0,00 %</td>
</tr>
</tbody>
</table>
Tabela 11: Število bolnikov z ugotovljeno MRSA in delež teh bolnikov z bolnišnično pridobljeno MRSA v posamezni bolnišnici v letu 2017.

<table>
<thead>
<tr>
<th>Število bolnikov z MRSA</th>
<th>Delež bolnikov, ki so MRSA pridobili v bolnišnici</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psihiatrična bolnišnica Vojnik</td>
<td>2</td>
</tr>
<tr>
<td>Splošna bolnišnica dr. Franca Derganca Nova Gorica</td>
<td>81</td>
</tr>
<tr>
<td>Splošna bolnišnica dr. Jožeta Potrča Ptuj</td>
<td>44</td>
</tr>
<tr>
<td>Psihiatrična bolnišnica Idrija</td>
<td>8</td>
</tr>
<tr>
<td>Splošna bolnišnica Nova mesto</td>
<td>171</td>
</tr>
<tr>
<td>Univerzitetni klinični center Ljubljana</td>
<td>527</td>
</tr>
<tr>
<td>Univerzitetni klinični center Maribor</td>
<td>155</td>
</tr>
<tr>
<td>Psihiatrična klinika Ljubljana</td>
<td>28</td>
</tr>
<tr>
<td>Bolnišnica Sežana</td>
<td>20</td>
</tr>
<tr>
<td>Splošna bolnišnica Slovenj Gradec</td>
<td>20</td>
</tr>
<tr>
<td>Splošna bolnišnica Celje</td>
<td>212</td>
</tr>
<tr>
<td>Splošna bolnišnica Murska Sobota</td>
<td>253</td>
</tr>
<tr>
<td>Splošna bolnišnica Jesenice</td>
<td>118</td>
</tr>
<tr>
<td>Inštitut Republike Slovenije za rehabilitacijo</td>
<td>58</td>
</tr>
<tr>
<td>Splošna bolnišnica Izola</td>
<td>126</td>
</tr>
<tr>
<td>Bolnišnica za ginekologijo in porodništvo Kranj</td>
<td>0</td>
</tr>
<tr>
<td>Center za zdravljenje bolezni otrok Šentvid pri Stični</td>
<td>0</td>
</tr>
<tr>
<td>Mladinsko klimatsko zdravilišče Rakitna</td>
<td>0</td>
</tr>
<tr>
<td>Psihiatrična bolnišnica Begunje</td>
<td>5</td>
</tr>
<tr>
<td>Psihiatrična bolnišnica Ormož</td>
<td>4</td>
</tr>
<tr>
<td>Kirurški sanatorij Rožna dolina d. d.</td>
<td>1</td>
</tr>
<tr>
<td>Medicor</td>
<td>2</td>
</tr>
</tbody>
</table>
Slika 55: Delež bolnikov, ki so MRSA pridobili v posamezni bolnišnici, glede na skupno število bolnikov, pri katerih je bila ugotovljena MRSA v letu 2016.

Slika 56: Delež bolnikov, ki so MRSA pridobili v posamezni bolnišnici, glede na skupno število bolnikov, pri katerih je bila ugotovljena MRSA v letu 2017.

Pridobljeni podatki so standardizirani glede na starost in spol bolnikov. Po definiciji kazalnik OECD 2016–2017 so vključeni le primeri pooperativne seps po abdominalnih posegih. Izključeni so primeri s primarno diagnozo okužba in rak, sekundarno diagnozo sepsa in imunokompromitiranih bolnikov. Glede na prisotnost edinstvenega bolnikovega identifikatorja (unique patient indentificator – UPI) so izključeni primeri s sepso ob sprejemu in trajanjem hospitalizacije manj kot 3 dni, v primerih brez UPI še ponovni sprejemi 30 dni po dnevu operativnega posega.

Glavna omejitev analize pooperativne seps v Sloveniji je nezmožnost prepoznavanja sprejemnih diagnoz. To pomeni, da se pri prikazu vrednosti kazalnika za pooperativne seps (ob upoštevanju izključitvenih kriterijev) upoštevajo vsi primeri hospitalizacije z diagnozo sepsa in istočasno izvedenim kirurškim posegom.

Pooperativno sepso je vsekakor potrebno takoj prepoznati in zdraviti. V primeru stanja po operativnem posegu se jo težko loči od sindroma sistemskega vnetnega odziva (SIRS). Treba je poiskati septično žarišče, zlasti na območju operativnih ran. Poleg tega je treba vpeljati pravilen sistem ovrednotenja pooperativne seps. Le tako se bo lahko stopnja pooperativne seps natančneje določila.

Literatura:

KK65 – POŠKODBE OSEBJA Z OSTRIMI PREDMETI

Poškodbe zdravstvenega osebja z ostrimi predmeti so rane, povzročene z injekcijskimi iglami ali drugimi ostrimi predmeti. Po predrtju kože so lahko kri ali druge telesne tekočine izpostavljene nalezljivim patogenom, zlasti krvno prenosljivim virusom (1). Kazalnik poškodbe osebja z ostrimi predmeti izraža varnost zdravstvenega osebja.

Bolnišnice o številu poškodb osebja z ostrimi predmeti četrtletno poročajo MZ. Zanesljivost podatkov je odvisna od natančnosti spremljanja poškodb s strani izvajalcev zdravstvenih storitev. Pogoj za uspešno spremljanje poškodb je vzpostavitev sistema za poročanje in beleženje teh dogodkov ter kulture poročanja s strani zdravstvenega osebja, ki se mu dogodek pripeti. Obstaja možnost pristranskosti, saj se včasih poškodbe podcenjujejo ali pa poročanje o njih ni zadostno.

V letih 2016 in 2017 so bile opazne razlike v številu poškodb osebja z ostrimi predmeti. Izvajalci, ki imajo manjše število zaposlenih, so imeli več poškodb osebja z ostrimi predmeti kot izvajalci z večjim številom zaposlenih (slika 59). Iz primerjave vrednosti med bolnišnicami ni mogoče sklepati, ali je večja pogostnost poškodb osebja z ostrimi predmeti pri izvajalcih z manjšim številom zaposlenih posledica boljšega načina spremljanja dogodkov ali njihove dejanske večje pogostnosti in, nasprotno, manjša pogostnost poškodb osebja z ostrimi predmeti pri izvajalcih z večjim številom zaposlenih posledica slabšega načina spremljanja dogodkov ali njihove dejanske manjše pogostnosti.

V prihodnosti je vsekakor potrebna vzpostavitev natančnega sistema za beleženje takih dogodkov in poročanje o njih ter ustrezna izobrazba osebja, da bi se izognili takim dogodkom.

Literatura:

DODATEK

HIGIENA ROK

Kazalnik higiena rok se meri z doslednostjo upoštevanja higiene rok in je predstavljen v odstotnem deležu (%). Za izračun doslednosti se uporablja formula:

\[
\text{doslednost} = \frac{\text{število dejanj}}{\text{število priložnosti}} \times 100
\]

Dejanje pomeni vsako opaženo izvajalčevso umivanje rok z vodo in milom ali razkuževanje rok z alkoholnim razkužilom glede na priložnosti in indikacije. Indikacija je definiran trenutek, v katerem je treba izvesti higieno rok (pred stikom z bolnikom in aseptičnim postopkom, po stiku s telesno tekočino, bolnikom in okolico). Priložnost je potreba po higieni rok in je definirana vsaj z enim od mogočih 5 trenutkov za higieno rok.

Bolnišnična sporočanja podatkov o doslednosti izvajanja higiene rok MZ so prvič potekala za leto 2015, in sicer dvakrat letno (za prvo in drugo polletje), posebej na enotah intenzivne terapije (EIT) in drugih bolnišničnih oddelkov.

Podatki o higieni rok na drugih bolnišničnih oddelkih za leti 2016 in 2017 so predstavljeni v tabeli 13. V letu 2016 ne temeljijo povsod na zadostnem obsegu opazovanih dejanj. V letu 2017 se je število opazovanih dejanj povečalo. V letu 2017 je bila na drugih bolnišničnih oddelkih dosežena nekoliko višja doslednost higien rok (76,5 %) kot v letu 2016 (74,5 %), vendar je bila skupno v letu 2016 nižja za 2 %, v letu 2017 pa za 3,4 % od doslednosti higien rok v EIT.

EIT ni vzpostavljena v primeru treh bolnišnic. Nekatere bolnišnice niso poslale podatkov o doslednosti higien rok za leto 2017. Vendar se kljub temu kaže, da se kazalnik higiena rok po priporočilu SZO uveljavlja v slovenskih bolnišnicah (1). Doslednost higien rok v EIT in na drugih oddelkih je enako pomembna, zaradi česar se morajo ukrepi za izboljševanje doslednosti higien rok usmerjati v vse bolnišnične enote (tabela 14).
V letu 2017 je ponovno potekalo izobraževanje za opazovalce higiene rok v bolnišnicah. K naslednjemu izobraževanju bodo za opazovalce higiene rok posebno vabljeni opazovalci iz bolnišnic, ki podatkov niso poslale.

Doslednost higiene rok je pomembna za vse deležnike v zdravstvu, zaradi česar je potrebna razširitev dejavnosti. Opazovanje doslednosti higiene rok je pomemben proces za vse izvajalce zdravstvene dejavnosti. Higiena rok je temeljni ukrep za zagotovitev varnosti bolnikov in zaposlenih.
Tabela 12: Higiena rok zdravstvenih delavcev in sodelavcev v enotah intenzivne terapije za leti 2016 in 2017

<table>
<thead>
<tr>
<th></th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>število sporočevalcev</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>sporočeno število dejanj</td>
<td>od 27 do 1161</td>
<td>od 91 do 1419</td>
</tr>
<tr>
<td>sporočeno število priložnosti</td>
<td>od 50 do 1550</td>
<td>od 93 do 1773</td>
</tr>
<tr>
<td>sporočena doslednost higiene rok</td>
<td>od 51,4 do 100 %</td>
<td>od 59 do 95,7 %</td>
</tr>
<tr>
<td>skupno število opazovanih dejanj</td>
<td>8308</td>
<td>8717</td>
</tr>
<tr>
<td>skupno število opazovanih priložnosti</td>
<td>10897</td>
<td>10912</td>
</tr>
<tr>
<td>skupna doslednost higiene rok</td>
<td>76,2 %</td>
<td>79,9 %</td>
</tr>
</tbody>
</table>

Tabela 13: Higiena rok na ostalih oddelkih bolnišnic za leti 2016 in 2017.

<table>
<thead>
<tr>
<th></th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>število sporočevalcev</td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td>sporočeno število dejanj</td>
<td>od 34 do 6157</td>
<td>od 238 do 8911</td>
</tr>
<tr>
<td>sporočeno število priložnosti</td>
<td>od 59 do 8343</td>
<td>od 479 do 11392</td>
</tr>
<tr>
<td>sporočena doslednost higiene rok</td>
<td>od 51,4 do 97,9 %</td>
<td>od 50 do 96,4 %</td>
</tr>
<tr>
<td>skupno število opazovanih dejanj</td>
<td>24946</td>
<td>21470</td>
</tr>
<tr>
<td>skupno število opazovanih priložnosti</td>
<td>33491</td>
<td>28050</td>
</tr>
<tr>
<td>skupna doslednost higiene rok</td>
<td>74,5 %</td>
<td>76,5 %</td>
</tr>
</tbody>
</table>
Slika 60: Vrednosti kazalnika higiena rok po bolnišnicah po letih spremljanja.

Slika 61: Vrednosti kazalnika higiena rok po bolnišnicah za enote intenzivne terapije (EIT) in druge oddelke (oddelki).
Tabela 14: Ocena vrednosti kazalnika higiena rok po bolnišnicah.

<table>
<thead>
<tr>
<th>Bolnišnica</th>
<th>Vrednost kazalnika EIT %</th>
<th>Vrednost kazalnika OD %</th>
<th>Ocena</th>
</tr>
</thead>
<tbody>
<tr>
<td>KLINIKA GOLNIK</td>
<td>82,2 68,3 89,3 81</td>
<td>87,7 65,9 80 81,5</td>
<td></td>
</tr>
<tr>
<td>BOLNIŠNICA TOPOLŠČICA</td>
<td>63,5 70,2 67,8</td>
<td>56 81,8 65,5 66,6</td>
<td></td>
</tr>
<tr>
<td>BOLNIŠNICA SEŽANA</td>
<td>74,4 57,2 62,6 87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INŠTITUT RS ZA REHABILITACIJO</td>
<td>41,3 49,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKC LJUBLJANA</td>
<td>78,1 76,9 79,2 77,9 73,8 77,1 77,4 79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORTOPEDSKA BOLNIŠNICA VALDOLTRA</td>
<td>85,7 78,6</td>
<td>76,9 71 71,2</td>
<td></td>
</tr>
<tr>
<td>SB BREŽICE</td>
<td>84,7 89,8 76,9 79,4 82,4 84,3 77,4 79,7 84,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB NOVA GORICA</td>
<td>57,9 69,7 51,4 67,1 58,9 72,1 65,3 70,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB IZOLA</td>
<td>70,7 74,6 70,7 61,7 75,9 77,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKC MARIBOR</td>
<td>67,1 69,5 82 81,4 64,5 69,1 68,1 77,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB MURSKA SOBOTA</td>
<td>73,7 63,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB NOVO MESTO</td>
<td>90 84,3 91,4 85,9 91,0 82,1 91,3 90,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB PTUJ</td>
<td>94 93,5 89,7 80 88,7 89,9 86,5 80,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB SLOVENJ GRADEC</td>
<td>82,2 71,3 78 82,6 78,9 81 80 72,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB TRBOVLJE</td>
<td>65,7 67,9 73,5 68,1 67,3 71,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ONKOLOŠKI INŠTITUT</td>
<td>77,5 67 69,7 66,2 72,5 74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEDICOR</td>
<td>100 100 100 97,8 97,9 97,6 93,1 95,7 93,1 95,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOLNIŠNICA ZA GINEKOLOGIJO IN PORODNIŠTO KRANJ</td>
<td>54 57,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KIRURŠKI SANATORIJ ROŽNA DOLINA</td>
<td>89,6 74,2 70,6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>